當前位置: 首頁>>代碼示例>>Python>>正文


Python netCDF4.num2date方法代碼示例

本文整理匯總了Python中netCDF4.num2date方法的典型用法代碼示例。如果您正苦於以下問題:Python netCDF4.num2date方法的具體用法?Python netCDF4.num2date怎麽用?Python netCDF4.num2date使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在netCDF4的用法示例。


在下文中一共展示了netCDF4.num2date方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_time

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def set_time(self, time):
        '''
        Converts time data into a pandas date object.

        Parameters
        ----------
        time: netcdf
            Contains time information.

        Returns
        -------
        pandas.DatetimeIndex
        '''
        times = num2date(time[:].squeeze(), time.units,
                         only_use_cftime_datetimes=False,
                         only_use_python_datetimes=True)
        self.time = pd.DatetimeIndex(pd.Series(times), tz=self.location.tz) 
開發者ID:pvlib,項目名稱:pvlib-python,代碼行數:19,代碼來源:forecast.py

示例2: _valid_times

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def _valid_times(dataset, variable):
        """Search dataset for time axis"""
        var = dataset.variables[variable]
        for d in var.dimensions:
            if d.startswith('time'):
                if d in dataset.variables:
                    tvar = dataset.variables[d]
                    return np.array(
                        netCDF4.num2date(tvar[:], units=tvar.units),
                        dtype='datetime64[s]')
        coords = var.coordinates.split()
        for c in coords:
            if c.startswith('time'):
                tvar = dataset.variables[c]
                return np.array(
                    netCDF4.num2date(tvar[:], units=tvar.units),
                    dtype='datetime64[s]') 
開發者ID:MetOffice,項目名稱:forest,代碼行數:19,代碼來源:unified_model.py

示例3: _map_ini_times_to_paths

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def _map_ini_times_to_paths(self, paths):
        """
        .. note:: Potentially expensive I/O operation
        """
        mapping = defaultdict(list)
        for path in paths:
            initial_time = _initial_time(path)
            try:
                with netCDF4.Dataset(path) as dataset:
                    if initial_time is None:
                        var = dataset.variables["forecast_reference_time"]
                        initial_time = netCDF4.num2date(var[:], units=var.units)
            except (FileNotFoundError, KeyError) as ex:
                pass
            mapping[self.key(initial_time)].append(path)
        return mapping 
開發者ID:MetOffice,項目名稱:forest,代碼行數:18,代碼來源:_profile.py

示例4: _times

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def _times(dataset, variable):
        """Find times related to variable in dataset"""
        time_dimension = variable.dimensions[0]
        coordinates = variable.coordinates.split()
        for c in coordinates:
            if c.startswith("time"):
                try:
                    var = dataset.variables[c]
                    return netCDF4.num2date(var[:], units=var.units)
                except KeyError:
                    pass
        for v, var in dataset.variables.items():
            if len(var.dimensions) != 1:
                continue
            if v.startswith("time"):
                d = var.dimensions[0]
                if d == time_dimension:
                    return netCDF4.num2date(var[:], units=var.units) 
開發者ID:MetOffice,項目名稱:forest,代碼行數:20,代碼來源:series.py

示例5: datespan_file

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def datespan_file(self, file):
        """
        return the just the day that this argo file covers
        """
        nc = seapy.netcdf(file)
        try:
            d = netCDF4.num2date(nc.variables['JULD'][0],
                                 nc.variables['JULD'].units)
            st = datetime.datetime(*d.timetuple()[:3])
            en = datetime.datetime(*d.timetuple()[:3] + (23, 59, 59))
        except:
            st = en = None
            pass
        finally:
            nc.close()
            return st, en 
開發者ID:powellb,項目名稱:seapy,代碼行數:18,代碼來源:obsgen.py

示例6: date2num

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def date2num(dates, units, calendar=None):
    """Convert an array of integer into datetime objects.

    This function optimizes the date2num function of python-netCDF4 if the
    standard calendar is used.

    Args:
        dates: Either an array of numpy.datetime64 objects (if standard
            gregorian calendar is used), otherwise an array of python
            datetime objects.
        units: A string with the format "{unit} since {epoch}",
            e.g. "seconds since 1970-01-01T00:00:00".
        calendar: (optional) Standard is gregorian. If others are used,
            netCDF4.num2date will be called.

    Returns:
        An array of integers.
    """
    if calendar is None:
        calendar = "gregorian"
    else:
        calendar = calendar.lower()

    if calendar != "gregorian":
        return netCDF4.date2num(dates, units, calendar)

    try:
        unit, epoch = units.split(" since ")
    except ValueError:
        raise InvalidUnitString("Could not convert to numeric values!")

    converted_data = \
        dates.astype("M8[%s]" % unit_mapper[unit]).astype("int")

    # numpy.datetime64 cannot read certain time formats while pandas can.
    epoch = pd.Timestamp(epoch).to_datetime64()

    if epoch != np.datetime64("1970-01-01"):
        converted_data -= np.datetime64("1970-01-01") - epoch
    return converted_data 
開發者ID:atmtools,項目名稱:typhon,代碼行數:42,代碼來源:timeutils.py

示例7: num2date

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def num2date(times, units, calendar=None):
    """Convert an array of integers into datetime objects.

    This function optimizes the num2date function of python-netCDF4 if the
    standard calendar is used.

    Args:
        times: An array of integers representing timestamps.
        units: A string with the format "{unit} since {epoch}",
            e.g. "seconds since 1970-01-01T00:00:00".
        calendar: (optional) Standard is gregorian. If others are used,
            netCDF4.num2date will be called.

    Returns:
        Either an array of numpy.datetime64 objects (if standard gregorian
        calendar is used), otherwise an array of python datetime objects.
    """
    try:
        unit, epoch = units.split(" since ")
    except ValueError:
        raise InvalidUnitString("Could not convert to datetimes!")

    if calendar is None:
        calendar = "gregorian"
    else:
        calendar = calendar.lower()

    if calendar != "gregorian":
        return netCDF4.num2date(times, units, calendar).astype(
            "M8[%s]" % unit_mapper[unit])

    # Numpy uses the epoch 1970-01-01 natively.
    converted_data = times.astype("M8[%s]" % unit_mapper[unit])

    # numpy.datetime64 cannot read certain time formats while pandas can.
    epoch = pd.Timestamp(epoch).to_datetime64()

    # Maybe there is another epoch used?
    if epoch != np.datetime64("1970-01-01"):
        converted_data -= np.datetime64("1970-01-01") - epoch
    return converted_data 
開發者ID:atmtools,項目名稱:typhon,代碼行數:43,代碼來源:timeutils.py

示例8: __read_var

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def __read_var(self, file, var):
        ds = Dataset(file, 'r')
        self.nx = len(ds.dimensions[self.config.xdim])
        self.ny = len(ds.dimensions[self.config.ydim])
        self.nt = len(ds.dimensions[self.config.tdim])

        self.x = ds.variables[self.config.xname][:]
        self.y = ds.variables[self.config.yname][:]

        # Sort out the dimensions.
        if self.config.clip:
            alldims = {}
            for key, val in list(ds.dimensions.items()):
                alldims[key] = (0, len(val))
            vardims = ds.variables[var].dimensions

            for clipname in self.config.clip:
                clipdims = self.config.clip[clipname]
                common = set(alldims.keys()).intersection([clipname])
                for k in common:
                    alldims[k] = clipdims
            dims = [alldims[d] for d in vardims]


        self.data = np.flipud(np.squeeze(ds.variables[var][
                dims[0][0]:dims[0][1],
                dims[1][0]:dims[1][1],
                dims[2][0]:dims[2][1],
                dims[3][0]:dims[3][1]
                ]))

        self.time = ds.variables[self.config.tname][:]
        self.Times = []
        for t in self.time:
            self.Times.append(num2date(
                t,
                'seconds since {}'.format(self.config.basedate),
                calendar=self.config.calendar
                ))

        ds.close() 
開發者ID:pwcazenave,項目名稱:netcdf2json,代碼行數:43,代碼來源:netcdf2json.py

示例9: initial_time_netcdf4

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def initial_time_netcdf4(self, path):
        with netCDF4.Dataset(path) as dataset:
            try:
                var = dataset.variables["forecast_reference_time"]
                result = netCDF4.num2date(var[:], units=var.units)
            except KeyError:
                result = None
        return result 
開發者ID:MetOffice,項目名稱:forest,代碼行數:10,代碼來源:unified_model.py

示例10: netcdf4_strategy

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def netcdf4_strategy(path):
        with netCDF4.Dataset(path) as dataset:
            var = dataset.variables["forecast_reference_time" ]
            values = netCDF4.num2date(var[:], units=var.units)
        return values 
開發者ID:MetOffice,項目名稱:forest,代碼行數:7,代碼來源:unified_model.py

示例11: read_times

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def read_times(path):
    """Read time axis from a file"""
    with netCDF4.Dataset(path) as dataset:
        var = dataset.variables["time"]
        times = netCDF4.num2date(var[:], units=var.units)
    return np.array([forest.util.to_datetime(t) for t in times], dtype=object) 
開發者ID:MetOffice,項目名稱:forest,代碼行數:8,代碼來源:gpm.py

示例12: _load_cube

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def _load_cube(self, path, variable, lon0, lat0, pressure=None):
        """ Constrain data loading to points required """
        cube = iris.load_cube(path, variable)
        # reference longitude axis by "axis='X'" and latitude axis as axis='Y',
        # to accommodate various types of coordinate system.
        # e.g. 'grid_longitude'. See iris.utils.guess_coord_axis.
        if cube.coord(axis='X').points[-1] > 180.0:
            # get circular longitude values
            lon0 = iris.analysis.cartography.wrap_lons(np.asarray(lon0), 0, 360)
        # Construct constraint
        coord_values={cube.coord(axis='X').standard_name: lon0,
                      cube.coord(axis='Y').standard_name: lat0,                     
                      }
        if pressure is not None and 'pressure' in [coord.name() for coord in cube.coords()]:
            ptol = 0.01 * pressure
            coord_values['pressure'] = (
                lambda cell: (pressure - ptol) < cell < (pressure + ptol)
            )
        cube = cube.extract(iris.Constraint(coord_values=coord_values))
        assert cube is not None
        # Get validity times and data values
        # list the validity times as datetime objects
        time_coord = cube.coord('time')
        times = time_coord.units.num2date(time_coord.points).tolist()
        values = cube.data
        return {
            "x": times,
            "y": values} 
開發者ID:MetOffice,項目名稱:forest,代碼行數:30,代碼來源:series.py

示例13: __init__

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def __init__(self, paths):
        self.paths = paths
        self.table = defaultdict(list)
        for path in paths:
            time = _initial_time(path)
            if time is None:
                try:
                    with netCDF4.Dataset(path) as dataset:
                        var = dataset.variables["forecast_reference_time"]
                        time = netCDF4.num2date(var[:], units=var.units)
                except KeyError:
                    continue
            self.table[self.key(time)].append(path) 
開發者ID:MetOffice,項目名稱:forest,代碼行數:15,代碼來源:series.py

示例14: test_locator_times

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def test_locator_times(tmpdir):
    path = str(tmpdir / "eida50_20190417.nc")
    with netCDF4.Dataset(path, "w") as dataset:
        _eida50(dataset, TIMES, LONS, LATS)
    result = eida50.Locator.load_time_axis(path)
    with netCDF4.Dataset(path) as dataset:
        var = dataset.variables["time"]
        expect = netCDF4.num2date(var[:], units=var.units)
    np.testing.assert_array_equal(expect, result) 
開發者ID:MetOffice,項目名稱:forest,代碼行數:11,代碼來源:test_drivers_eida50.py

示例15: findLastYearInNCTime

# 需要導入模塊: import netCDF4 [as 別名]
# 或者: from netCDF4 import num2date [as 別名]
def findLastYearInNCTime(ncTimeVariable):

    # last datetime
    last_datetime = nc.num2date(ncTimeVariable[len(ncTimeVariable) - 1],\
                                ncTimeVariable.units,\
                                ncTimeVariable.calendar) 
    
    return last_datetime.year 
開發者ID:UU-Hydro,項目名稱:PCR-GLOBWB_model,代碼行數:10,代碼來源:virtualOS.py


注:本文中的netCDF4.num2date方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。