當前位置: 首頁>>代碼示例>>Python>>正文


Python neptune.create_experiment方法代碼示例

本文整理匯總了Python中neptune.create_experiment方法的典型用法代碼示例。如果您正苦於以下問題:Python neptune.create_experiment方法的具體用法?Python neptune.create_experiment怎麽用?Python neptune.create_experiment使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在neptune的用法示例。


在下文中一共展示了neptune.create_experiment方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def __init__(self, *args, **kwargs):
        try:
            import neptune
        except ImportError:
            raise RuntimeError(
                "This contrib module requires neptune-client to be installed. "
                "You may install neptune with command: \n pip install neptune-client \n"
            )

        if kwargs.get("offline_mode", False):
            self.mode = "offline"
            neptune.init(project_qualified_name="dry-run/project", backend=neptune.OfflineBackend())
        else:
            self.mode = "online"
            neptune.init(api_token=kwargs.get("api_token"), project_qualified_name=kwargs.get("project_name"))

        kwargs["name"] = kwargs.pop("experiment_name", None)
        self._experiment_kwargs = {
            k: v for k, v in kwargs.items() if k not in ["api_token", "project_name", "offline_mode"]
        }

        self.experiment = neptune.create_experiment(**self._experiment_kwargs) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:24,代碼來源:neptune_logger.py

示例2: train_evaluate_cv

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def train_evaluate_cv():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    if DEV_MODE:
        meta = meta.sample(PARAMS.dev_mode_size, random_state=SEED)

    meta_train = meta[meta['is_train'] == 1]

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['train', 'evaluate', 'on_cv_folds'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):

        cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)

        fold_auc = []
        for fold_id, (train_idx, valid_idx) in enumerate(cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1))):
            train_data_split, valid_data_split = meta_train.iloc[train_idx], meta_train.iloc[valid_idx]

            if USE_AUXILIARY_DATA:
                auxiliary = pd.read_csv(PARAMS.auxiliary_metadata_filepath)
                train_auxiliary = auxiliary[auxiliary[ID_COLUMN].isin(valid_data_split[ID_COLUMN].tolist())]
                train_data_split = pd.concat([train_data_split, train_auxiliary], axis=0)

            LOGGER.info('Started fold {}'.format(fold_id))
            auc, _ = fold_fit_evaluate_loop(train_data_split, valid_data_split, fold_id)
            LOGGER.info('Fold {} AUC {}'.format(fold_id, auc))
            neptune.send_metric('Fold {} AUC'.format(fold_id), auc)

            fold_auc.append(auc)

        auc_mean, auc_std = np.mean(fold_auc), np.std(fold_auc)
        log_scores(auc_mean, auc_std) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:35,代碼來源:empty_vs_non_empty.py

示例3: evaluate_cv

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def evaluate_cv():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    if DEV_MODE:
        meta = meta.sample(PARAMS.dev_mode_size, random_state=SEED)

    meta_train = meta[meta['is_train'] == 1]

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['evaluate', 'on_cv_folds'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):

        cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)

        fold_auc = []
        for fold_id, (train_idx, valid_idx) in enumerate(cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1))):
            valid_data_split = meta_train.iloc[valid_idx]

            LOGGER.info('Started fold {}'.format(fold_id))
            auc, _ = fold_evaluate_loop(valid_data_split, fold_id)
            LOGGER.info('Fold {} AUC {}'.format(fold_id, auc))
            neptune.send_metric('Fold {} AUC'.format(fold_id), auc)

            fold_auc.append(auc)

        auc_mean, auc_std = np.mean(fold_auc), np.std(fold_auc)
        log_scores(auc_mean, auc_std) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:30,代碼來源:empty_vs_non_empty.py

示例4: evaluate_predict_cv

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def evaluate_predict_cv():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    if DEV_MODE:
        meta = meta.sample(PARAMS.dev_mode_size, random_state=SEED)

    meta_train = meta[meta['is_train'] == 1]
    meta_test = meta[meta['is_train'] == 0]

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['evaluate', 'predict', 'on_cv_folds'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):

        cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)

        fold_auc, out_of_fold_train_predictions, out_of_fold_test_predictions = [], [], []
        for fold_id, (train_idx, valid_idx) in enumerate(cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1))):
            valid_data_split = meta_train.iloc[valid_idx]

            LOGGER.info('Started fold {}'.format(fold_id))
            auc, out_of_fold_prediction, test_prediction = fold_evaluate_predict_loop(valid_data_split,
                                                                                      meta_test,
                                                                                      fold_id)

            LOGGER.info('Fold {} AUC {}'.format(fold_id, auc))
            neptune.send_metric('Fold {} AUC'.format(fold_id), auc)

            fold_auc.append(auc)
            out_of_fold_train_predictions.append(out_of_fold_prediction)
            out_of_fold_test_predictions.append(test_prediction)

        train_ids, train_predictions = [], []
        for idx_fold, train_pred_fold in out_of_fold_train_predictions:
            train_ids.extend(idx_fold)
            train_predictions.extend(train_pred_fold)

        auc_mean, auc_std = np.mean(fold_auc), np.std(fold_auc)
        log_scores(auc_mean, auc_std)
        save_predictions(train_ids, train_predictions, meta_test, out_of_fold_test_predictions) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:42,代碼來源:empty_vs_non_empty.py

示例5: train

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def train():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    meta_train = meta[meta['is_train'] == 1]

    cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)
    for train_idx, valid_idx in cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1)):
        break

    meta_train_split, meta_valid_split = meta_train.iloc[train_idx], meta_train.iloc[valid_idx]

    if USE_AUXILIARY_DATA:
        auxiliary = pd.read_csv(PARAMS.auxiliary_metadata_filepath)
        train_auxiliary = auxiliary[auxiliary[ID_COLUMN].isin(meta_valid_split[ID_COLUMN].tolist())]
        meta_train_split = pd.concat([meta_train_split, train_auxiliary], axis=0)

    if DEV_MODE:
        meta_train_split = meta_train_split.sample(PARAMS.dev_mode_size, random_state=SEED)
        meta_valid_split = meta_valid_split.sample(int(PARAMS.dev_mode_size / 2), random_state=SEED)

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['train'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):

        data = {'input': {'meta': meta_train_split
                          },
                'callback_input': {'meta_valid': meta_valid_split
                                   }
                }

        pipeline_network = network(config=CONFIG, train_mode=True)
        pipeline_network.clean_cache()
        pipeline_network.fit_transform(data)
        pipeline_network.clean_cache() 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:37,代碼來源:main.py

示例6: predict

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def predict():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    meta_test = meta[meta['is_train'] == 0]

    if DEV_MODE:
        meta_test = meta_test.sample(PARAMS.dev_mode_size, random_state=SEED)

    data = {'input': {'meta': meta_test,
                      },
            'callback_input': {'meta_valid': None
                               }
            }

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['predict'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):
        pipeline_network = network(config=CONFIG, train_mode=False)
        pipeline_postprocessing = pipelines.mask_postprocessing(config=CONFIG)
        pipeline_network.clean_cache()
        predicted_masks = pipeline_network.transform(data)
        test_masks = {'input_masks': predicted_masks
                      }
        output = pipeline_postprocessing.transform(test_masks)
        pipeline_network.clean_cache()
        pipeline_postprocessing.clean_cache()
        y_pred_test = output['binarized_images']

        submission = utils.create_submission(meta_test, y_pred_test)

        submission_filepath = os.path.join(EXPERIMENT_DIR, 'submission.csv')

        submission.to_csv(submission_filepath, index=None, encoding='utf-8')
        LOGGER.info('submission saved to {}'.format(submission_filepath))
        LOGGER.info('submission head \n\n{}'.format(submission.head())) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:38,代碼來源:main.py

示例7: train_evaluate_cv

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def train_evaluate_cv():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    if DEV_MODE:
        meta = meta.sample(PARAMS.dev_mode_size, random_state=SEED)

    meta_train = meta[meta['is_train'] == 1]

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['train', 'evaluate', 'on_cv_folds'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):
        cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)

        fold_iou, fold_iout = [], []
        for fold_id, (train_idx, valid_idx) in enumerate(cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1))):
            train_data_split, valid_data_split = meta_train.iloc[train_idx], meta_train.iloc[valid_idx]

            if USE_AUXILIARY_DATA:
                auxiliary = pd.read_csv(PARAMS.auxiliary_metadata_filepath)
                train_auxiliary = auxiliary[auxiliary[ID_COLUMN].isin(valid_data_split[ID_COLUMN].tolist())]
                train_data_split = pd.concat([train_data_split, train_auxiliary], axis=0)

            LOGGER.info('Started fold {}'.format(fold_id))
            iou, iout, _ = fold_fit_evaluate_loop(train_data_split, valid_data_split, fold_id)
            LOGGER.info('Fold {} IOU {}'.format(fold_id, iou))
            neptune.send_metric('Fold {} IOU'.format(fold_id), iou)
            LOGGER.info('Fold {} IOUT {}'.format(fold_id, iout))
            neptune.send_metric('Fold {} IOUT'.format(fold_id), iout)

            fold_iou.append(iou)
            fold_iout.append(iout)

        iou_mean, iou_std = np.mean(fold_iou), np.std(fold_iou)
        iout_mean, iout_std = np.mean(fold_iout), np.std(fold_iout)

        log_scores(iou_mean, iou_std, iout_mean, iout_std) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:39,代碼來源:main.py

示例8: evaluate_cv

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def evaluate_cv():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    if DEV_MODE:
        meta = meta.sample(PARAMS.dev_mode_size, random_state=SEED)

    meta_train = meta[meta['is_train'] == 1]

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['evaluate', 'on_cv_folds'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):

        cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)

        fold_iou, fold_iout = [], []
        for fold_id, (train_idx, valid_idx) in enumerate(cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1))):
            valid_data_split = meta_train.iloc[valid_idx]

            LOGGER.info('Started fold {}'.format(fold_id))
            iou, iout, _ = fold_evaluate_loop(valid_data_split, fold_id)
            LOGGER.info('Fold {} IOU {}'.format(fold_id, iou))
            neptune.send_metric('Fold {} IOU'.format(fold_id), iou)
            LOGGER.info('Fold {} IOUT {}'.format(fold_id, iout))
            neptune.send_metric('Fold {} IOUT'.format(fold_id), iout)

            fold_iou.append(iou)
            fold_iout.append(iout)

        iou_mean, iou_std = np.mean(fold_iou), np.std(fold_iou)
        iout_mean, iout_std = np.mean(fold_iout), np.std(fold_iout)

        log_scores(iou_mean, iou_std, iout_mean, iout_std) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:35,代碼來源:main.py

示例9: start_experiment

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def start_experiment(self):
        neptune.init(project_qualified_name=self.config.project)
        neptune.create_experiment(name=self.config.name,
                                  params=self.params,
                                  upload_source_files=get_filepaths(),
                                  tags=self.config.tags) 
開發者ID:neptune-ai,項目名稱:open-solution-mapping-challenge,代碼行數:8,代碼來源:pipeline_manager.py

示例10: train_evaluate_predict_cv

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def train_evaluate_predict_cv():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    if DEV_MODE:
        meta = meta.sample(PARAMS.dev_mode_size, random_state=SEED)

    meta_train = meta[meta['is_train'] == 1]
    meta_test = meta[meta['is_train'] == 0]

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['train', 'evaluate', 'predict', 'on_cv_folds'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):

        cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)

        fold_auc, out_of_fold_train_predictions, out_of_fold_test_predictions = [], [], []
        for fold_id, (train_idx, valid_idx) in enumerate(cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1))):
            train_data_split, valid_data_split = meta_train.iloc[train_idx], meta_train.iloc[valid_idx]

            if USE_AUXILIARY_DATA:
                auxiliary = pd.read_csv(PARAMS.auxiliary_metadata_filepath)
                train_auxiliary = auxiliary[auxiliary[ID_COLUMN].isin(valid_data_split[ID_COLUMN].tolist())]
                train_data_split = pd.concat([train_data_split, train_auxiliary], axis=0)

            LOGGER.info('Started fold {}'.format(fold_id))
            auc, out_of_fold_prediction, test_prediction = fold_fit_evaluate_predict_loop(train_data_split,
                                                                                          valid_data_split,
                                                                                          meta_test,
                                                                                          fold_id)

            LOGGER.info('Fold {} AUC {}'.format(fold_id, auc))
            neptune.send_metric('Fold {} AUC'.format(fold_id), auc)

            fold_auc.append(auc)
            out_of_fold_train_predictions.append(out_of_fold_prediction)
            out_of_fold_test_predictions.append(test_prediction)

        train_ids, train_predictions = [], []
        for idx_fold, train_pred_fold in out_of_fold_train_predictions:
            train_ids.extend(idx_fold)
            train_predictions.extend(train_pred_fold)

        auc_mean, auc_std = np.mean(fold_auc), np.std(fold_auc)
        log_scores(auc_mean, auc_std)
        save_predictions(train_ids, train_predictions, meta_test, out_of_fold_test_predictions) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:48,代碼來源:empty_vs_non_empty.py

示例11: train_evaluate_predict_cv

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def train_evaluate_predict_cv():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    if DEV_MODE:
        meta = meta.sample(PARAMS.dev_mode_size, random_state=SEED)

    meta_train = meta[meta['is_train'] == 1]
    meta_test = meta[meta['is_train'] == 0]

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['train', 'evaluate', 'predict', 'on_cv_folds'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):

        cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)

        fold_iou, fold_iout, out_of_fold_train_predictions, out_of_fold_test_predictions = [], [], [], []
        for fold_id, (train_idx, valid_idx) in enumerate(cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1))):
            train_data_split, valid_data_split = meta_train.iloc[train_idx], meta_train.iloc[valid_idx]

            if USE_AUXILIARY_DATA:
                auxiliary = pd.read_csv(PARAMS.auxiliary_metadata_filepath)
                train_auxiliary = auxiliary[auxiliary[ID_COLUMN].isin(valid_data_split[ID_COLUMN].tolist())]
                train_data_split = pd.concat([train_data_split, train_auxiliary], axis=0)

            LOGGER.info('Started fold {}'.format(fold_id))
            iou, iout, out_of_fold_prediction, test_prediction = fold_fit_evaluate_predict_loop(train_data_split,
                                                                                                valid_data_split,
                                                                                                meta_test,
                                                                                                fold_id)

            LOGGER.info('Fold {} IOU {}'.format(fold_id, iou))
            neptune.send_metric('Fold {} IOU'.format(fold_id), iou)
            LOGGER.info('Fold {} IOUT {}'.format(fold_id, iout))
            neptune.send_metric('Fold {} IOUT'.format(fold_id), iout)

            fold_iou.append(iou)
            fold_iout.append(iout)
            out_of_fold_train_predictions.append(out_of_fold_prediction)
            out_of_fold_test_predictions.append(test_prediction)

        train_ids, train_predictions = [], []
        for idx_fold, train_pred_fold in out_of_fold_train_predictions:
            train_ids.extend(idx_fold)
            train_predictions.extend(train_pred_fold)

        iou_mean, iou_std = np.mean(fold_iou), np.std(fold_iou)
        iout_mean, iout_std = np.mean(fold_iout), np.std(fold_iout)

        log_scores(iou_mean, iou_std, iout_mean, iout_std)

        save_predictions(train_ids, train_predictions, meta_test, out_of_fold_test_predictions) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:54,代碼來源:main.py

示例12: evaluate_predict_cv

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def evaluate_predict_cv():
    meta = pd.read_csv(PARAMS.metadata_filepath)
    if DEV_MODE:
        meta = meta.sample(PARAMS.dev_mode_size, random_state=SEED)

    meta_train = meta[meta['is_train'] == 1]
    meta_test = meta[meta['is_train'] == 0]

    with neptune.create_experiment(name=EXPERIMENT_NAME,
                                   params=PARAMS,
                                   tags=TAGS + ['evaluate', 'predict', 'on_cv_folds'],
                                   upload_source_files=get_filepaths(),
                                   properties={'experiment_dir': EXPERIMENT_DIR}):

        cv = utils.KFoldBySortedValue(n_splits=PARAMS.n_cv_splits, shuffle=PARAMS.shuffle, random_state=SEED)

        fold_iou, fold_iout, out_of_fold_train_predictions, out_of_fold_test_predictions = [], [], [], []
        for fold_id, (train_idx, valid_idx) in enumerate(cv.split(meta_train[DEPTH_COLUMN].values.reshape(-1))):
            valid_data_split = meta_train.iloc[valid_idx]

            LOGGER.info('Started fold {}'.format(fold_id))
            iou, iout, out_of_fold_prediction, test_prediction = fold_evaluate_predict_loop(valid_data_split,
                                                                                            meta_test,
                                                                                            fold_id)

            LOGGER.info('Fold {} IOU {}'.format(fold_id, iou))
            neptune.send_metric('Fold {} IOU'.format(fold_id), iou)
            LOGGER.info('Fold {} IOUT {}'.format(fold_id, iout))
            neptune.send_metric('Fold {} IOUT'.format(fold_id), iout)

            fold_iou.append(iou)
            fold_iout.append(iout)
            out_of_fold_train_predictions.append(out_of_fold_prediction)
            out_of_fold_test_predictions.append(test_prediction)

        train_ids, train_predictions = [], []
        for idx_fold, train_pred_fold in out_of_fold_train_predictions:
            train_ids.extend(idx_fold)
            train_predictions.extend(train_pred_fold)

        iou_mean, iou_std = np.mean(fold_iou), np.std(fold_iou)
        iout_mean, iout_std = np.mean(fold_iout), np.std(fold_iout)

        log_scores(iou_mean, iou_std, iout_mean, iout_std)
        save_predictions(train_ids, train_predictions, meta_test, out_of_fold_test_predictions) 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:47,代碼來源:main.py

示例13: __init__

# 需要導入模塊: import neptune [as 別名]
# 或者: from neptune import create_experiment [as 別名]
def __init__(
        self,
        metric_names: List[str] = None,
        log_on_batch_end: bool = True,
        log_on_epoch_end: bool = True,
        offline_mode: bool = False,
        **logging_params,
    ):
        """
        Args:
            metric_names (List[str]): list of metric names to log,
                if none - logs everything
            log_on_batch_end (bool): logs per-batch metrics if set True
            log_on_epoch_end (bool): logs per-epoch metrics if set True
            offline_mode (bool): whether logging to Neptune server should
                 be turned off. It is useful for debugging
        """
        super().__init__(
            order=CallbackOrder.logging,
            node=CallbackNode.master,
            scope=CallbackScope.experiment,
        )
        self.metrics_to_log = metric_names
        self.log_on_batch_end = log_on_batch_end
        self.log_on_epoch_end = log_on_epoch_end

        if not (self.log_on_batch_end or self.log_on_epoch_end):
            raise ValueError("You have to log something!")

        if (self.log_on_batch_end and not self.log_on_epoch_end) or (
            not self.log_on_batch_end and self.log_on_epoch_end
        ):
            self.batch_log_suffix = ""
            self.epoch_log_suffix = ""
        else:
            self.batch_log_suffix = "_batch"
            self.epoch_log_suffix = "_epoch"

        if offline_mode:
            neptune.init(
                project_qualified_name="dry-run/project",
                backend=neptune.OfflineBackend(),
            )
        else:
            neptune.init(
                api_token=logging_params["api_token"],
                project_qualified_name=logging_params["project_name"],
            )

        logging_params.pop("api_token")
        logging_params.pop("project_name")

        self.experiment = neptune.create_experiment(**logging_params) 
開發者ID:catalyst-team,項目名稱:catalyst,代碼行數:55,代碼來源:neptune_logger.py


注:本文中的neptune.create_experiment方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。