當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Conv方法代碼示例

本文整理匯總了Python中neon.layers.Conv方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Conv方法的具體用法?Python layers.Conv怎麽用?Python layers.Conv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在neon.layers的用法示例。


在下文中一共展示了layers.Conv方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main_branch

# 需要導入模塊: from neon import layers [as 別名]
# 或者: from neon.layers import Conv [as 別名]
def main_branch(branch_nodes):
    return [Conv((7, 7, 64), padding=3, strides=2, **common),
            Pooling(**pool3s2p1),
            Conv((1, 1, 64), **common),
            Conv((3, 3, 192), **commonp1),
            Pooling(**pool3s2p1),
            inception([(64, ), (96, 128), (16, 32), (32, )]),
            inception([(128,), (128, 192), (32, 96), (64, )]),
            Pooling(**pool3s2p1),
            inception([(192,), (96, 208), (16, 48), (64, )]),
            branch_nodes[0],
            inception([(160,), (112, 224), (24, 64), (64, )]),
            inception([(128,), (128, 256), (24, 64), (64, )]),
            inception([(112,), (144, 288), (32, 64), (64, )]),
            branch_nodes[1],
            inception([(256,), (160, 320), (32, 128), (128,)]),
            Pooling(**pool3s2p1),
            inception([(256,), (160, 320), (32, 128), (128,)]),
            inception([(384,), (192, 384), (48, 128), (128,)]),
            Pooling(fshape=7, strides=1, op="avg"),
            Affine(nout=1000, init=init1, activation=Softmax(), bias=Constant(0))] 
開發者ID:NervanaSystems,項目名稱:ModelZoo,代碼行數:23,代碼來源:googlenet_neon.py

示例2: inception

# 需要導入模塊: from neon import layers [as 別名]
# 或者: from neon.layers import Conv [as 別名]
def inception(kvals):
    (p1, p2, p3, p4) = kvals

    branch1 = [Conv((1, 1, p1[0]), **common)]
    branch2 = [Conv((1, 1, p2[0]), **common),
               Conv((3, 3, p2[1]), **commonp1)]
    branch3 = [Conv((1, 1, p3[0]), **common),
               Conv((5, 5, p3[1]), **commonp2)]
    branch4 = [Pooling(op="max", **pool3s1p1),
               Conv((1, 1, p4[0]), **common)]
    return MergeBroadcast(layers=[branch1, branch2, branch3, branch4], merge="depth") 
開發者ID:NervanaSystems,項目名稱:ModelZoo,代碼行數:13,代碼來源:googlenet_neon.py

示例3: aux_branch

# 需要導入模塊: from neon import layers [as 別名]
# 或者: from neon.layers import Conv [as 別名]
def aux_branch(bnode):
    return [bnode,
            Pooling(fshape=5, strides=3, op="avg"),
            Conv((1, 1, 128), **common),
            Affine(nout=1024, init=init1, activation=relu, bias=bias),
            Dropout(keep=0.3),
            Affine(nout=1000, init=init1, activation=Softmax(), bias=Constant(0))]


# Now construct the model 
開發者ID:NervanaSystems,項目名稱:ModelZoo,代碼行數:12,代碼來源:googlenet_neon.py

示例4: module_factory

# 需要導入模塊: from neon import layers [as 別名]
# 或者: from neon.layers import Conv [as 別名]
def module_factory(nfm, stride=1):
    mainpath = [Conv(**conv_params(3, nfm, stride=stride)),
                Conv(**conv_params(3, nfm, relu=False))]
    sidepath = [SkipNode() if stride == 1 else Conv(**id_params(nfm))]
    module = [MergeSum([mainpath, sidepath]),
              Activation(Rectlin())]
    return module

# Structure of the deep residual part of the network:
# args.depth modules of 2 convolutional layers each at feature map depths of 16, 32, 64 
開發者ID:NervanaSystems,項目名稱:ModelZoo,代碼行數:12,代碼來源:resnet_cifar10.py

示例5: module_factory

# 需要導入模塊: from neon import layers [as 別名]
# 或者: from neon.layers import Conv [as 別名]
def module_factory(nfm, stride=1):
    projection = None if stride == 1 else IdentityInit()
    module = [Conv(**conv_params(3, nfm, stride=stride)),
              Conv(**conv_params(3, nfm, relu=False))]
    module = module if args.network == 'plain' else [ResidualModule(module, projection)]
    module.append(Activation(Rectlin()))
    return module


# Structure of the deep residual part of the network:
# args.depth modules of 2 convolutional layers each at feature map depths of 16, 32, 64 
開發者ID:NervanaSystems,項目名稱:ModelZoo,代碼行數:13,代碼來源:miniplaces_msra.py

示例6: gen_model

# 需要導入模塊: from neon import layers [as 別名]
# 或者: from neon.layers import Conv [as 別名]
def gen_model(num_channels, height, width):
    assert NervanaObject.be is not None, 'need to generate a backend before using this function'

    init_uni = Kaiming()

    # we have 1 issue, they have bias layers we don't allow batchnorm and biases
    conv_common = dict(padding=1, init=init_uni, activation=Rectlin(), batch_norm=True)

    # set up the layers
    layers = []

    # need to store a ref to the pooling layers to pass
    # to the upsampling layers to get the argmax indicies
    # for upsampling, this stack holds the pooling layer refs
    pool_layers = []

    # first loop generates the encoder layers
    nchan = [64, 128, 256, 512, 512]
    for ind in range(len(nchan)):
        nchanu = nchan[ind]
        lrng = 2 if ind <= 1 else 3
        for lind in range(lrng):
            nm = 'conv%d_%d' % (ind+1, lind+1)
            layers.append(Conv((3, 3, nchanu), strides=1, name=nm, **conv_common))

        layers.append(Pooling(2, strides=2, name='conv%d_pool' % ind))
        pool_layers.append(layers[-1])
        if ind >= 2:
            layers.append(Dropout(keep=0.5, name='drop%d' % (ind+1)))

    # this loop generates the decoder layers
    for ind in range(len(nchan)-1,-1,-1):
        nchanu = nchan[ind]
        lrng = 2 if ind <= 1 else 3
        # upsampling layers need a ref to the corresponding pooling layer
        # to access the argmx indices for upsampling
        layers.append(Upsampling(2, pool_layers.pop(), strides=2, padding=0,
                      name='conv%d_unpool' % ind))
        for lind in range(lrng):
            nm = 'deconv%d_%d' % (ind+1, lind+1)
            if ind < 4 and lind == lrng-1:
                nchanu = nchan[ind]/2
            layers.append(Conv((3, 3, nchanu), strides=1, name=nm, **conv_common))
            if ind == 0:
                break
        if ind >= 2:
            layers.append(Dropout(keep=0.5, name='drop%d' % (ind+1)))

    # last conv layer outputs 12 channels, 1 for each output class
    # with a pixelwise softmax over the channels
    act_last = PixelwiseSoftmax(num_channels, height, width, name="PixelwiseSoftmax")
    conv_last = dict(padding=1, init=init_uni, activation=act_last, batch_norm=False)
    layers.append(Conv((3, 3, num_channels), strides=1, name='deconv_out', **conv_last))
    return layers 
開發者ID:NervanaSystems,項目名稱:neon_segnet,代碼行數:56,代碼來源:segnet_neon.py

示例7: main

# 需要導入模塊: from neon import layers [as 別名]
# 或者: from neon.layers import Conv [as 別名]
def main():
    parser = get_parser()
    args = parser.parse_args()
    print('Args:', args)

    loggingLevel = logging.DEBUG if args.verbose else logging.INFO
    logging.basicConfig(level=loggingLevel, format='')

    ext = extension_from_parameters(args)

    loader = p1b3.DataLoader(feature_subsample=args.feature_subsample,
                             scaling=args.scaling,
                             drug_features=args.drug_features,
                             scramble=args.scramble,
                             min_logconc=args.min_logconc,
                             max_logconc=args.max_logconc,
                             subsample=args.subsample,
                             category_cutoffs=args.category_cutoffs)

    # initializer = Gaussian(loc=0.0, scale=0.01)
    initializer = GlorotUniform()
    activation = get_function(args.activation)()

    layers = []
    reshape = None

    if args.convolution and args.convolution[0]:
        reshape = (1, loader.input_dim, 1)
        layer_list = list(range(0, len(args.convolution), 3))
        for l, i in enumerate(layer_list):
            nb_filter = args.convolution[i]
            filter_len = args.convolution[i+1]
            stride = args.convolution[i+2]
            # print(nb_filter, filter_len, stride)
            # fshape: (height, width, num_filters).
            layers.append(Conv((1, filter_len, nb_filter), strides={'str_h':1, 'str_w':stride}, init=initializer, activation=activation))
            if args.pool:
                layers.append(Pooling((1, args.pool)))

    for layer in args.dense:
        if layer:
            layers.append(Affine(nout=layer, init=initializer, activation=activation))
        if args.drop:
            layers.append(Dropout(keep=(1-args.drop)))
    layers.append(Affine(nout=1, init=initializer, activation=neon.transforms.Identity()))

    model = Model(layers=layers)

    train_iter = ConcatDataIter(loader, ndata=args.train_samples, lshape=reshape, datatype=args.datatype)
    val_iter = ConcatDataIter(loader, partition='val', ndata=args.val_samples, lshape=reshape, datatype=args.datatype)

    cost = GeneralizedCost(get_function(args.loss)())
    optimizer = get_function(args.optimizer)()
    callbacks = Callbacks(model, eval_set=val_iter, **args.callback_args)

    model.fit(train_iter, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks) 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:58,代碼來源:p1b3_baseline_neon.py


注:本文中的neon.layers.Conv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。