本文整理匯總了Python中mypath.Path.db_root_dir方法的典型用法代碼示例。如果您正苦於以下問題:Python Path.db_root_dir方法的具體用法?Python Path.db_root_dir怎麽用?Python Path.db_root_dir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mypath.Path
的用法示例。
在下文中一共展示了Path.db_root_dir方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calculate_weigths_labels
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def calculate_weigths_labels(dataset, dataloader, num_classes):
# Create an instance from the data loader
z = np.zeros((num_classes,))
# Initialize tqdm
tqdm_batch = tqdm(dataloader)
print('Calculating classes weights')
for sample in tqdm_batch:
y = sample['label']
y = y.detach().cpu().numpy()
mask = (y >= 0) & (y < num_classes)
labels = y[mask].astype(np.uint8)
count_l = np.bincount(labels, minlength=num_classes)
z += count_l
tqdm_batch.close()
total_frequency = np.sum(z)
class_weights = []
for frequency in z:
class_weight = 1 / (np.log(1.02 + (frequency / total_frequency)))
class_weights.append(class_weight)
ret = np.array(class_weights)
classes_weights_path = os.path.join(Path.db_root_dir(dataset), dataset+'_classes_weights.npy')
np.save(classes_weights_path, ret)
return ret
示例2: __init__
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def __init__(self,
args,
base_dir=Path.db_root_dir('coco'),
split='train',
year='2017'):
super().__init__()
ann_file = os.path.join(base_dir, 'annotations/instances_{}{}.json'.format(split, year))
ids_file = os.path.join(base_dir, 'annotations/{}_ids_{}.pth'.format(split, year))
self.img_dir = os.path.join(base_dir, 'images/{}{}'.format(split, year))
self.split = split
self.coco = COCO(ann_file)
self.coco_mask = mask
if os.path.exists(ids_file):
self.ids = torch.load(ids_file)
else:
ids = list(self.coco.imgs.keys())
self.ids = self._preprocess(ids, ids_file)
self.args = args
示例3: __init__
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def __init__(self, args, root=Path.db_root_dir('cityscapes'), split="train"):
self.root = root
self.split = split
self.args = args
self.files = {}
self.images_base = os.path.join(self.root, 'leftImg8bit', self.split)
self.annotations_base = os.path.join(self.root, 'gtFine_trainvaltest', 'gtFine', self.split)
self.files[split] = self.recursive_glob(rootdir=self.images_base, suffix='.png')
self.void_classes = [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1]
self.valid_classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33]
self.class_names = ['unlabelled', 'road', 'sidewalk', 'building', 'wall', 'fence', \
'pole', 'traffic_light', 'traffic_sign', 'vegetation', 'terrain', \
'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', \
'motorcycle', 'bicycle']
self.ignore_index = 255
self.class_map = dict(zip(self.valid_classes, range(self.NUM_CLASSES)))
if not self.files[split]:
raise Exception("No files for split=[%s] found in %s" % (split, self.images_base))
print("Found %d %s images" % (len(self.files[split]), split))
示例4: __init__
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def __init__(self, root=Path.db_root_dir('cityscapes'), split="train", transform=None):
self.root = root
self.split = split
self.transform = transform
self.files = {}
self.n_classes = 19
self.images_base = os.path.join(self.root, 'leftImg8bit', self.split)
self.annotations_base = os.path.join(self.root, 'gtFine_trainvaltest', 'gtFine', self.split)
self.files[split] = recursive_glob(rootdir=self.images_base, suffix='.png')
self.void_classes = [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1]
self.valid_classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33]
self.class_names = ['unlabelled', 'road', 'sidewalk', 'building', 'wall', 'fence', \
'pole', 'traffic_light', 'traffic_sign', 'vegetation', 'terrain', \
'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', \
'motorcycle', 'bicycle']
self.ignore_index = 255
self.class_map = dict(zip(self.valid_classes, range(self.n_classes)))
if not self.files[split]:
raise Exception("No files for split=[%s] found in %s" % (split, self.images_base))
print("Found %d %s images" % (len(self.files[split]), split))
示例5: __init__
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def __init__(self,
base_dir=Path.db_root_dir('fundus'),
dataset='refuge',
split='train',
testid=None,
transform=None
):
"""
:param base_dir: path to VOC dataset directory
:param split: train/val
:param transform: transform to apply
"""
# super().__init__()
self._base_dir = base_dir
self.image_list = []
self.split = split
self.image_pool = []
self.label_pool = []
self.img_name_pool = []
SEED = 1212
random.seed(SEED)
self._image_dir = os.path.join(self._base_dir, dataset, split, 'image')
print(self._image_dir)
imagelist = glob(self._image_dir + "/*.png")
for image_path in imagelist:
gt_path = image_path.replace('image', 'mask')
self.image_list.append({'image': image_path, 'label': gt_path, 'id': testid})
self.transform = transform
self._read_img_into_memory()
# Display stats
print('Number of images in {}: {:d}'.format(split, len(self.image_list)))
示例6: __init__
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def __init__(self,
args,
base_dir=Path.db_root_dir('sbd'),
split='train',
):
"""
:param base_dir: path to VOC dataset directory
:param split: train/val
:param transform: transform to apply
"""
super().__init__()
self._base_dir = base_dir
self._dataset_dir = os.path.join(self._base_dir, 'dataset')
self._image_dir = os.path.join(self._dataset_dir, 'img')
self._cat_dir = os.path.join(self._dataset_dir, 'cls')
if isinstance(split, str):
self.split = [split]
else:
split.sort()
self.split = split
self.args = args
# Get list of all images from the split and check that the files exist
self.im_ids = []
self.images = []
self.categories = []
for splt in self.split:
with open(os.path.join(self._dataset_dir, splt + '.txt'), "r") as f:
lines = f.read().splitlines()
for line in lines:
_image = os.path.join(self._image_dir, line + ".jpg")
_categ= os.path.join(self._cat_dir, line + ".mat")
assert os.path.isfile(_image)
assert os.path.isfile(_categ)
self.im_ids.append(line)
self.images.append(_image)
self.categories.append(_categ)
assert (len(self.images) == len(self.categories))
# Display stats
print('Number of images: {:d}'.format(len(self.images)))
示例7: __init__
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def __init__(self,
args,
base_dir=Path.db_root_dir('pascal'),
split='train',
):
"""
:param base_dir: path to VOC dataset directory
:param split: train/val
:param transform: transform to apply
"""
super().__init__()
self._base_dir = base_dir
self._image_dir = os.path.join(self._base_dir, 'JPEGImages')
self._cat_dir = os.path.join(self._base_dir, 'SegmentationClass')
if isinstance(split, str):
self.split = [split]
else:
split.sort()
self.split = split
self.args = args
_splits_dir = os.path.join(self._base_dir, 'ImageSets', 'Segmentation')
self.im_ids = []
self.images = []
self.categories = []
for splt in self.split:
with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), "r") as f:
lines = f.read().splitlines()
for ii, line in enumerate(lines):
_image = os.path.join(self._image_dir, line + ".jpg")
_cat = os.path.join(self._cat_dir, line + ".png")
assert os.path.isfile(_image)
assert os.path.isfile(_cat)
self.im_ids.append(line)
self.images.append(_image)
self.categories.append(_cat)
assert (len(self.images) == len(self.categories))
# Display stats
print('Number of images in {}: {:d}'.format(split, len(self.images)))
示例8: __init__
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def __init__(self,
base_dir=Path.db_root_dir('sbd'),
split='train',
transform=None
):
"""
:param base_dir: path to VOC dataset directory
:param split: train/val
:param transform: transform to apply
"""
super().__init__()
self._base_dir = base_dir
self._dataset_dir = os.path.join(self._base_dir, 'dataset')
self._image_dir = os.path.join(self._dataset_dir, 'img')
self._cat_dir = os.path.join(self._dataset_dir, 'cls')
if isinstance(split, str):
self.split = [split]
else:
split.sort()
self.split = split
self.transform = transform
# Get list of all images from the split and check that the files exist
self.im_ids = []
self.images = []
self.categories = []
for splt in self.split:
with open(os.path.join(self._dataset_dir, splt + '.txt'), "r") as f:
lines = f.read().splitlines()
for line in lines:
_image = os.path.join(self._image_dir, line + ".jpg")
_categ= os.path.join(self._cat_dir, line + ".mat")
assert os.path.isfile(_image)
assert os.path.isfile(_categ)
self.im_ids.append(line)
self.images.append(_image)
self.categories.append(_categ)
assert (len(self.images) == len(self.categories))
# Display stats
print('Number of images: {:d}'.format(len(self.images)))
示例9: __init__
# 需要導入模塊: from mypath import Path [as 別名]
# 或者: from mypath.Path import db_root_dir [as 別名]
def __init__(self,
base_dir=Path.db_root_dir('pascal'),
split='train',
transform=None
):
"""
:param base_dir: path to VOC dataset directory
:param split: train/val
:param transform: transform to apply
"""
super().__init__()
self._base_dir = base_dir
self._image_dir = os.path.join(self._base_dir, 'JPEGImages')
self._cat_dir = os.path.join(self._base_dir, 'SegmentationClass')
if isinstance(split, str):
self.split = [split]
else:
split.sort()
self.split = split
self.transform = transform
_splits_dir = os.path.join(self._base_dir, 'ImageSets', 'Segmentation')
self.im_ids = []
self.images = []
self.categories = []
for splt in self.split:
with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), "r") as f:
lines = f.read().splitlines()
for ii, line in enumerate(lines):
_image = os.path.join(self._image_dir, line + ".jpg")
_cat = os.path.join(self._cat_dir, line + ".png")
assert os.path.isfile(_image)
assert os.path.isfile(_cat)
self.im_ids.append(line)
self.images.append(_image)
self.categories.append(_cat)
assert (len(self.images) == len(self.categories))
# Display stats
print('Number of images in {}: {:d}'.format(split, len(self.images)))