本文整理匯總了Python中my.tensorflow.grouper方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.grouper方法的具體用法?Python tensorflow.grouper怎麽用?Python tensorflow.grouper使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類my.tensorflow
的用法示例。
在下文中一共展示了tensorflow.grouper方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_batches
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import grouper [as 別名]
def get_batches(self, batch_size, num_batches=None, shuffle=False, cluster=False):
"""
:param batch_size:
:param num_batches:
:param shuffle:
:param cluster: cluster examples by their lengths; this might give performance boost (i.e. faster training).
:return:
"""
num_batches_per_epoch = int(math.ceil(self.num_examples / batch_size))
if num_batches is None:
num_batches = num_batches_per_epoch
num_epochs = int(math.ceil(num_batches / num_batches_per_epoch))
if shuffle:
random_idxs = random.sample(self.valid_idxs, len(self.valid_idxs))
if cluster:
sorted_idxs = sorted(random_idxs, key=self._sort_key)
sorted_grouped = lambda: list(grouper(sorted_idxs, batch_size))
grouped = lambda: random.sample(sorted_grouped(), num_batches_per_epoch)
else:
random_grouped = lambda: list(grouper(random_idxs, batch_size))
grouped = random_grouped
else:
raw_grouped = lambda: list(grouper(self.valid_idxs, batch_size))
grouped = raw_grouped
batch_idx_tuples = itertools.chain.from_iterable(grouped() for _ in range(num_epochs))
for _ in range(num_batches):
batch_idxs = tuple(i for i in next(batch_idx_tuples) if i is not None)
batch_data = self.get_by_idxs(batch_idxs)
shared_batch_data = {}
for key, val in batch_data.items():
if key.startswith('*'):
assert self.shared is not None
shared_key = key[1:]
shared_batch_data[shared_key] = [index(self.shared[shared_key], each) for each in val]
batch_data.update(shared_batch_data)
batch_ds = DataSet(batch_data, self.data_type, shared=self.shared)
yield batch_idxs, batch_ds
示例2: get_multi_batches
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import grouper [as 別名]
def get_multi_batches(self, batch_size, num_batches_per_step, num_steps=None, shuffle=False, cluster=False):
batch_size_per_step = batch_size * num_batches_per_step
batches = self.get_batches(batch_size_per_step, num_batches=num_steps, shuffle=shuffle, cluster=cluster)
multi_batches = (tuple(zip(grouper(idxs, batch_size, shorten=True, num_groups=num_batches_per_step),
data_set.divide(num_batches_per_step))) for idxs, data_set in batches)
return multi_batches
示例3: divide
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import grouper [as 別名]
def divide(self, integer):
batch_size = int(math.ceil(self.num_examples / integer))
idxs_gen = grouper(self.valid_idxs, batch_size, shorten=True, num_groups=integer)
data_gen = (self.get_by_idxs(idxs) for idxs in idxs_gen)
ds_tuple = tuple(DataSet(data, self.data_type, shared=self.shared) for data in data_gen)
return ds_tuple