本文整理匯總了Python中my.tensorflow.exp_mask方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.exp_mask方法的具體用法?Python tensorflow.exp_mask怎麽用?Python tensorflow.exp_mask使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類my.tensorflow
的用法示例。
在下文中一共展示了tensorflow.exp_mask方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import exp_mask [as 別名]
def __call__(self, inputs, state, scope=None):
"""
:param inputs: [N*B, I + B]
:param state: [N*B, d]
:param scope:
:return: [N*B, d]
"""
with tf.variable_scope(scope or self.__class__.__name__):
d = self.state_size
x = tf.slice(inputs, [0, 0], [-1, self._input_size]) # [N*B, I]
mask = tf.slice(inputs, [0, self._input_size], [-1, -1]) # [N*B, B]
B = tf.shape(mask)[1]
prev_state = tf.expand_dims(tf.reshape(state, [-1, B, d]), 1) # [N, B, d] -> [N, 1, B, d]
mask = tf.tile(tf.expand_dims(tf.reshape(mask, [-1, B, B]), -1), [1, 1, 1, d]) # [N, B, B, d]
# prev_state = self._reduce_func(tf.tile(prev_state, [1, B, 1, 1]), 2)
prev_state = self._reduce_func(exp_mask(prev_state, mask), 2) # [N, B, d]
prev_state = tf.reshape(prev_state, [-1, d]) # [N*B, d]
return self._cell(x, prev_state)
示例2: __call__
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import exp_mask [as 別名]
def __call__(self, inputs, state, scope=None):
"""
:param inputs: [N, d + JQ + JQ * d]
:param state: [N, d]
:param scope:
:return:
"""
with tf.variable_scope(scope or self.__class__.__name__):
c_prev, h_prev = state
x = tf.slice(inputs, [0, 0], [-1, self._input_size])
q_mask = tf.slice(inputs, [0, self._input_size], [-1, self._q_len]) # [N, JQ]
qs = tf.slice(inputs, [0, self._input_size + self._q_len], [-1, -1])
qs = tf.reshape(qs, [-1, self._q_len, self._input_size]) # [N, JQ, d]
x_tiled = tf.tile(tf.expand_dims(x, 1), [1, self._q_len, 1]) # [N, JQ, d]
h_prev_tiled = tf.tile(tf.expand_dims(h_prev, 1), [1, self._q_len, 1]) # [N, JQ, d]
f = tf.tanh(linear([qs, x_tiled, h_prev_tiled], self._input_size, True, scope='f')) # [N, JQ, d]
a = tf.nn.softmax(exp_mask(linear(f, 1, True, squeeze=True, scope='a'), q_mask)) # [N, JQ]
q = tf.reduce_sum(qs * tf.expand_dims(a, -1), 1)
z = tf.concat(1, [x, q]) # [N, 2d]
return self._cell(z, state)
示例3: softmax
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import exp_mask [as 別名]
def softmax(logits, mask=None, scope=None):
with tf.name_scope(scope or "Softmax"):
if mask is not None:
logits = exp_mask(logits, mask)
flat_logits = flatten(logits, 1)
flat_out = tf.nn.softmax(flat_logits)
out = reconstruct(flat_out, logits, 1)
return out
示例4: double_linear_logits
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import exp_mask [as 別名]
def double_linear_logits(args, size, bias, bias_start=0.0, scope=None, mask=None, wd=0.0, input_keep_prob=1.0, is_train=None):
with tf.variable_scope(scope or "Double_Linear_Logits"):
first = tf.tanh(linear(args, size, bias, bias_start=bias_start, scope='first',
wd=wd, input_keep_prob=input_keep_prob, is_train=is_train))
second = linear(first, 1, bias, bias_start=bias_start, squeeze=True, scope='second',
wd=wd, input_keep_prob=input_keep_prob, is_train=is_train)
if mask is not None:
second = exp_mask(second, mask)
return second
示例5: linear_logits
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import exp_mask [as 別名]
def linear_logits(args, bias, bias_start=0.0, scope=None, mask=None, wd=0.0, input_keep_prob=1.0, is_train=None):
with tf.variable_scope(scope or "Linear_Logits"):
logits = linear(args, 1, bias, bias_start=bias_start, squeeze=True, scope='first',
wd=wd, input_keep_prob=input_keep_prob, is_train=is_train)
if mask is not None:
logits = exp_mask(logits, mask)
return logits
示例6: sum_logits
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import exp_mask [as 別名]
def sum_logits(args, mask=None, name=None):
with tf.name_scope(name or "sum_logits"):
if args is None or (nest.is_sequence(args) and not args):
raise ValueError("`args` must be specified")
if not nest.is_sequence(args):
args = [args]
rank = len(args[0].get_shape())
logits = sum(tf.reduce_sum(arg, rank-1) for arg in args)
if mask is not None:
logits = exp_mask(logits, mask)
return logits
示例7: dense_logits_softmax_features
# 需要導入模塊: from my import tensorflow [as 別名]
# 或者: from my.tensorflow import exp_mask [as 別名]
def dense_logits_softmax_features(config, dense_logit_feature, collection, ph_mask, switch , scope=None):
with tf.variable_scope(scope or "dense_logits_softmax_features"):
# assert p_mask != None
# assert h_mask != None
# PL = dense_logit.get_shape().as_list()[1]
# HL = dense_logit.get_shape().as_list()[2]
# p_mask_aug = tf.reduce_any(tf.cast(tf.tile(tf.expand_dims(p_mask, 2), [1, 1, HL, 1]), tf.bool), axis=3)
# h_mask_aug = tf.reduce_any(tf.cast(tf.tile(tf.expand_dims(h_mask, 1), [1, PL, 1, 1]), tf.bool), axis=3)
# ph_mask = p_mask_aug & h_mask_aug #[N, PL, HL]
# ph_mask_d = tf.tile(tf.expand_dims(ph_mask, 3), [1,1,1,config.dense_logit_features_num])
dense_logit_with_exp_mask = exp_mask(dense_logit_feature, ph_mask) #[N, PL, HL, 20]
dense_logit_softmax_col = None
dense_logit_softmax_row = None
dense_logit_with_exp_mask = tf.expand_dims(dense_logit_with_exp_mask, axis=3)
if switch[0]:
print("dense logit with exp mask size")
print(dense_logit_with_exp_mask.get_shape().as_list())
dense_logit_softmax_row = tf.nn.softmax(dense_logit_with_exp_mask, dim=2, name='softmax_row')
if switch[1]:
dense_logit_softmax_col = tf.nn.softmax(dense_logit_with_exp_mask, dim=1, name='softmax_col')
mask = tf.expand_dims(tf.cast(ph_mask,tf.float32), axis=3)
if dense_logit_softmax_row is not None:
dense_logit_softmax_row = mask * dense_logit_softmax_row
print("mask shape")
print(mask.get_shape().as_list())
print("single layer feature")
print(dense_logit_softmax_row.get_shape().as_list())
collection.append(dense_logit_softmax_row)
if dense_logit_softmax_col is not None:
dense_logit_softmax_col = mask * dense_logit_softmax_col
collection.append(dense_logit_softmax_col)
# return tf.concat([dense_logit, dense_logit_softmax_col, dense_logit_softmax_row], axis=3)