本文整理匯總了Python中mxnet.sym方法的典型用法代碼示例。如果您正苦於以下問題:Python mxnet.sym方法的具體用法?Python mxnet.sym怎麽用?Python mxnet.sym使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet
的用法示例。
在下文中一共展示了mxnet.sym方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _fix_max_min
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def _fix_max_min(self, op_name, inputs):
""" MXNet maximum/minimum compares only two symbols at a time.
ONNX can send more than two to compare.
Breaking into multiple mxnet ops to compare two symbols at a time"""
if len(inputs) > 1:
if op_name == 'Max':
op = mx.sym.maximum(inputs[0], inputs[1])
for ip in inputs[2:]:
op = mx.sym.maximum(op, ip)
elif op_name == 'Min':
op = mx.sym.minimum(inputs[0], inputs[1])
for ip in inputs[2:]:
op = mx.sym.minimum(op, ip)
else:
op = inputs[0]
return op
示例2: _fix_channels
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def _fix_channels(self, op, attrs, inputs):
"""A workaround for getting 'channels' or 'units' since onnx don't provide
these attributes. We check the shape of weights provided to get the number.
"""
if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym.FullyConnected]:
return attrs
weight_name = self._renames[inputs[1]]
if not weight_name in self._params:
raise ValueError("Unable to get channels/units attr from onnx graph.")
else:
wshape = self._params[weight_name].shape
assert len(wshape) >= 2, "Weights shape is invalid: {}".format(wshape)
if op in [mx.sym.FullyConnected]:
attrs['num_hidden'] = wshape[0]
else:
if op == mx.sym.Convolution:
# Weight shape for Conv and FC: (M x C x kH x kW) : M is number of
# feature maps/hidden and C is number of channels
attrs['num_filter'] = wshape[0]
elif op == mx.sym.Deconvolution:
# Weight shape for DeConv : (C x M x kH x kW) : M is number of
# feature maps/filters and C is number of channels
attrs['num_filter'] = wshape[1]
return attrs
示例3: _compute_K
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def _compute_K(self, F, X, lengthscale, variance, X2=None):
"""
The internal interface for the actual covariance matrix computation.
:param F: MXNet computation type <mx.sym, mx.nd>.
:param X: the first set of inputs to the kernel.
:type X: MXNet NDArray or MXNet Symbol
:param X2: (optional) the second set of arguments to the kernel. If X2 is None, this computes a square
covariance matrix of X. In other words, X2 is internally treated as X.
:type X2: MXNet NDArray or MXNet Symbol
:param variance: the variance parameter (scalar), which scales the whole covariance matrix.
:type variance: MXNet NDArray or MXNet Symbol
:param lengthscale: the lengthscale parameter.
:type lengthscale: MXNet NDArray or MXNet Symbol
:return: The covariance matrix.
:rtype: MXNet NDArray or MXNet Symbol
"""
R2 = self._compute_R2(F, X, lengthscale, variance, X2=X2)
R = F.sqrt(F.clip(R2, 1e-14, np.inf))
return F.broadcast_mul(
(1+np.sqrt(5)*R+5/3.*R2)*F.exp(-np.sqrt(5)*R),
F.expand_dims(variance, axis=-2))
示例4: __init__
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def __init__(self,
num_var: int,
mean: nd_sym_type,
sigma: nd_sym_type,
F: ModuleType=mx.nd) -> None:
"""
Distribution object for Multivariate Normal. Works with batches.
Optionally works with batches and time steps, but be consistent in usage: i.e. if using time_step,
mean, sigma and data for log_prob must all include a time_step dimension.
:param num_var: number of variables in distribution
:param mean: mean for each variable,
of shape (num_var) or
of shape (batch_size, num_var) or
of shape (batch_size, time_step, num_var).
:param sigma: covariance matrix,
of shape (num_var, num_var) or
of shape (batch_size, num_var, num_var) or
of shape (batch_size, time_step, num_var, num_var).
:param (mx.nd or mx.sym) F: backend api (mx.sym if block has been hybridized).
"""
self.num_var = num_var
self.mean = mean
self.sigma = sigma
self.F = F
示例5: hybrid_forward
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def hybrid_forward(self,
F: ModuleType,
x: Union[NDArray, Symbol],
gradient_rescaler: Union[NDArray, Symbol]) -> Tuple[Union[NDArray, Symbol], ...]:
""" Overrides gluon.HybridBlock.hybrid_forward
:param nd or sym F: ndarray or symbol module
:param x: head input
:param gradient_rescaler: gradient rescaler for partial blocking of gradient
:return: head output
"""
if self._onnx:
# ONNX doesn't support BlockGrad() operator, but it's not typically needed for
# ONNX because mostly forward calls are performed using ONNX exported network.
grad_scaled_x = x
else:
grad_scaled_x = (F.broadcast_mul((1 - gradient_rescaler), F.BlockGrad(x)) +
F.broadcast_mul(gradient_rescaler, x))
out = self.head(grad_scaled_x)
return out
示例6: test_forward_elemwise_ops
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_elemwise_ops():
for op in ["elemwise_add", "elemwise_sub", "elemwise_mul",
"elemwise_div", "maximum", "minimum",
operator.lt, operator.le, operator.eq,
operator.ne, operator.gt, operator.ge]:
shape = (3, 4, 5)
dtype = 'float32'
a_np = np.random.uniform(size=shape).astype(dtype)
b_np = np.random.uniform(size=shape).astype(dtype)
if type(op) == str:
mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('a'), mx.sym.var('b')])
ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)])
else:
mx_sym = op(mx.sym.var('a'), mx.sym.var('b'))
ref_res = op(mx.nd.array(a_np), mx.nd.array(b_np))
shapes = {'a': shape, 'b': shape}
mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(a_np, b_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
示例7: test_forward_slice_axis
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_slice_axis():
def verify(shape, axis, begin, end):
data_np = np.random.uniform(size=shape).astype("float32")
ref_res = mx.nd.slice_axis(mx.nd.array(data_np), axis, begin, end)
mx_sym = mx.sym.slice_axis(mx.sym.var("data"), axis, begin, end)
mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": shape})
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(data_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
verify((3, 4), 0, 1, 2)
verify((3, 4), 0, 1, None)
verify((3, 4), 1, 0, 2)
verify((3, 4), 1, -3, -1)
verify((3, 4), -1, -3, -1)
示例8: test_forward_slice_like
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_slice_like():
def verify(x_shape, y_shape, axes):
x_np = np.random.uniform(size=x_shape).astype("float32")
y_np = np.random.uniform(size=y_shape).astype("float32")
if axes is None:
ref_res = mx.nd.slice_like(mx.nd.array(x_np), mx.nd.array(y_np))
mx_sym = mx.sym.slice_like(mx.sym.var("x"), mx.sym.var("y"))
else:
ref_res = mx.nd.slice_like(mx.nd.array(x_np), mx.nd.array(y_np), axes=axes)
mx_sym = mx.sym.slice_like(mx.sym.var("x"), mx.sym.var("y"), axes=axes)
mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": x_shape, "y": y_shape})
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(x_np, y_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
verify((3, 4), (2, 3), None)
verify((3, 4), (2, 3), (0, 1))
verify((3, 4), (2, 3), (0))
verify((3, 4), (2, 3), (-1))
示例9: test_forward_squeeze
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_squeeze():
def verify(shape, axis):
x_np = np.random.uniform(size=shape).astype("float32")
if axis is None:
ref_res = mx.nd.squeeze(mx.nd.array(x_np))
mx_sym = mx.sym.squeeze(mx.sym.var("x"))
else:
ref_res = mx.nd.squeeze(mx.nd.array(x_np), axis=axis)
mx_sym = mx.sym.squeeze(mx.sym.var("x"), axis=axis)
mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape})
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(x_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
verify((1, 3, 1), None)
verify((1, 3, 1), 0)
verify((1, 3, 1), 2)
verify((1, 3, 1), (0, 2))
示例10: test_forward_broadcast_axis
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_broadcast_axis():
def verify(shape, axis, size):
x_np = np.random.uniform(size=shape).astype("float32")
for op in ["broadcast_axis",
"broadcast_axes"]:
mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('x'),axis,size])
ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(x_np),axis,size])
mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape})
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(x_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
verify((1, 2, 1), 2, 3)
verify((1, 2, 1), (0, 2), (2, 3))
示例11: test_forward_full
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_full():
def verify(val, shape, dtype):
ctx = mx.cpu()
ref_res = mx.nd.full(shape, val, dtype=dtype)
mx_sym = mx.sym.full(shape, val, dtype=dtype)
mod, _ = relay.frontend.from_mxnet(mx_sym, {})
for target, ctx in ctx_list():
# Skip testing graph runtime because this op will be optimized out
# by constant folding.
for kind in ["debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()()
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
verify(2, (3, 4), "float32")
verify(2, (3, 4), "int32")
verify(3.5, (1, 3, 4), "float32")
示例12: test_forward_take
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_take():
def verify(shape, indices_src, axis, mode="clip"):
x_np = np.random.uniform(size=shape).astype("float32")
indices_np = np.array(indices_src, dtype="float32")
ref_res = mx.nd.take(mx.nd.array(x_np), mx.nd.array(indices_np), axis, mode)
mx_sym = mx.sym.take(mx.sym.var("x"), mx.sym.var("y"), axis, mode)
mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape, "y": indices_np.shape})
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(x_np, indices_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
verify((2,2), [[[1,0],[0,1]]], 0)
verify((2,2), [[[1,0],[0,1]]], 1)
verify((4,3,5,6), [[2,1,0,0]], -2)
verify((3,4), [-1, 5], 0)
verify((3,4), [-1, 5], 0, mode="wrap")
verify((3,4), [-1, 5], 1)
verify((3,4), [-1, 5], 1, mode="wrap")
示例13: test_forward_gather_nd
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_gather_nd():
def verify(xshape, yshape, y_data, error=False):
x_data = np.random.uniform(size=xshape).astype("float32")
ref_res = mx.nd.gather_nd(mx.nd.array(x_data), mx.nd.array(y_data))
mx_sym = mx.sym.gather_nd(mx.sym.var("x_data"), mx.sym.var("y_data"))
mod, _ = relay.frontend.from_mxnet(mx_sym, {"x_data": xshape, "y_data": yshape}, {"x_data": "float32", "y_data": "int32"})
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(x_data, y_data)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
verify((2, 2), (2, 3), [[1, 1, 0], [0, 1, 0]])
verify((2, 2, 2), (2, 2), [[0, 1], [1, 0]])
verify((3, 2, 2), (2, 2), [[0, 1], [1, 0]])
verify((3, 2), (2, 2, 3), [[[0, 1, 2], [2, 0, 1]], [[0, 0, 0], [1, 1, 1]]])
verify((1, 4), (1, 1), [[0]])
示例14: test_forward_grid_generator
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_grid_generator():
def verify(shape, transform_type, target_shape):
x = np.random.uniform(size=shape).astype("float32")
ref_res = mx.nd.GridGenerator(mx.nd.array(x), transform_type, target_shape)
mx_sym = mx.sym.GridGenerator(mx.sym.var("x"), transform_type, target_shape)
shape_dict = {"x": x.shape}
mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(
kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(x)
tvm.testing.assert_allclose(
op_res.asnumpy(), ref_res.asnumpy(), rtol=1e-5, atol=1e-5)
verify((4, 6), 'affine', (16, 32))
verify((4, 2, 16, 16), 'warp', None)
verify((1, 2, 16, 16), 'warp', None)
示例15: test_forward_Crop
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import sym [as 別名]
def test_forward_Crop():
def verify(xshape, yshape, offset=None):
x_data = np.random.uniform(size=xshape).astype("float32")
y_data = np.random.uniform(size=yshape).astype("float32")
if offset is None:
mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y"))
ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data))
else:
mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y"), offset=offset)
ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data), offset=offset)
mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": xshape, "y": yshape})
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
if offset is None or offset == (0, 0):
op_res = intrp.evaluate()(x_data, y_data)
else:
op_res = intrp.evaluate()(x_data)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
verify((1, 3, 40, 40), (1, 3, 20, 20))
verify((1, 3, 40, 40), (1, 3, 20, 20), (0, 0))
verify((1, 3, 40, 40), (1, 3, 20, 20), (10, 10))
verify((5, 32, 40, 40), (5, 32, 25, 25))
verify((5, 32, 40, 40), (5, 32, 25, 25), (5, 5))