本文整理匯總了Python中mxnet.ndarray.zeros方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.zeros方法的具體用法?Python ndarray.zeros怎麽用?Python ndarray.zeros使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet.ndarray
的用法示例。
在下文中一共展示了ndarray.zeros方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: synthetic_grad
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def synthetic_grad(X, theta, sigma1, sigma2, sigmax, rescale_grad=1.0, grad=None):
if grad is None:
grad = nd.empty(theta.shape, theta.context)
theta1 = theta.asnumpy()[0]
theta2 = theta.asnumpy()[1]
v1 = sigma1 ** 2
v2 = sigma2 ** 2
vx = sigmax ** 2
denominator = numpy.exp(-(X - theta1) ** 2 / (2 * vx)) + numpy.exp(
-(X - theta1 - theta2) ** 2 / (2 * vx))
grad_npy = numpy.zeros(theta.shape)
grad_npy[0] = -rescale_grad * ((numpy.exp(-(X - theta1) ** 2 / (2 * vx)) * (X - theta1) / vx
+ numpy.exp(-(X - theta1 - theta2) ** 2 / (2 * vx)) * (
X - theta1 - theta2) / vx) / denominator).sum() \
+ theta1 / v1
grad_npy[1] = -rescale_grad * ((numpy.exp(-(X - theta1 - theta2) ** 2 / (2 * vx)) * (
X - theta1 - theta2) / vx) / denominator).sum() \
+ theta2 / v2
grad[:] = grad_npy
return grad
示例2: run_toy_SGLD
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def run_toy_SGLD():
X, Y, X_test, Y_test = load_toy()
minibatch_size = 1
teacher_noise_precision = 1.0 / 9.0
net = get_toy_sym(True, teacher_noise_precision)
data_shape = (minibatch_size,) + X.shape[1::]
data_inputs = {'data': nd.zeros(data_shape, ctx=dev()),
'teacher_output_label': nd.zeros((minibatch_size, 1), ctx=dev())}
initializer = mx.init.Uniform(0.07)
exe, params, _ = \
SGLD(sym=net, data_inputs=data_inputs,
X=X, Y=Y, X_test=X_test, Y_test=Y_test, total_iter_num=50000,
initializer=initializer,
learning_rate=1E-4,
# lr_scheduler=mx.lr_scheduler.FactorScheduler(100000, 0.5),
prior_precision=0.1,
burn_in_iter_num=1000,
thin_interval=10,
task='regression',
minibatch_size=minibatch_size, dev=dev())
示例3: test_download_embed
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def test_download_embed():
@text.embedding.register
class Test(text.embedding._TokenEmbedding):
# 33 bytes.
pretrained_file_name_sha1 = \
{'embedding_test.vec': '29b9a6511cf4b5aae293c44a9ec1365b74f2a2f8'}
namespace = 'test'
def __init__(self, embedding_root='embeddings', init_unknown_vec=nd.zeros, **kwargs):
pretrained_file_name = 'embedding_test.vec'
Test._check_pretrained_file_names(pretrained_file_name)
super(Test, self).__init__(**kwargs)
pretrained_file_path = Test._get_pretrained_file(embedding_root, pretrained_file_name)
self._load_embedding(pretrained_file_path, ' ', init_unknown_vec)
test_embed = text.embedding.create('test')
assert test_embed.token_to_idx['hello'] == 1
assert test_embed.token_to_idx['world'] == 2
assert_almost_equal(test_embed.idx_to_vec[1].asnumpy(), (nd.arange(5) + 1).asnumpy())
assert_almost_equal(test_embed.idx_to_vec[2].asnumpy(), (nd.arange(5) + 6).asnumpy())
assert_almost_equal(test_embed.idx_to_vec[0].asnumpy(), nd.zeros((5,)).asnumpy())
示例4: get_time
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def get_time(self, module):
data = nd.zeros(self.input_shape)
batch = mxnet.io.DataBatch(data=(data,))
all_time = []
symbol_name = self.symbol_file.split('/')[-1]
print 'Start to evaluate: %s' % (symbol_name)
for i in xrange(self.iteration):
time_start = datetime.datetime.now()
module.forward(batch, is_train=False)
net_out = module.get_outputs()[0].asnumpy()
time_end = datetime.datetime.now()
one_time = time_end - time_start
all_time.append(one_time.total_seconds())
print 'Finish %d iterations in %f ms. Average infer time is [%f ms].' % (
self.iteration, numpy.sum(all_time)*1000, numpy.mean(all_time)*1000)
示例5: get_feature_set
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def get_feature_set(name, vid, args):
global feature_cache
key = (name,vid)
if key in feature_cache:
return feature_cache[key]
input_dir = os.path.join(args.image_dir, name, str(vid))
data = nd.zeros( (1 ,3, image_size[0], image_size[1]) )
F = []
for img in os.listdir(input_dir):
img = os.path.join(input_dir, img)
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2,0,1))
data[0][:] = img
db = mx.io.DataBatch(data=(data,))
model.forward(db, is_train=False)
net_out = model.get_outputs()[0].asnumpy().flatten()
F.append(net_out)
F = np.array(F)
F = sklearn.preprocessing.normalize(F)
feature_cache[key] = F
return F
示例6: run_mnist_SGD
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def run_mnist_SGD(training_num=50000):
X, Y, X_test, Y_test = load_mnist(training_num)
minibatch_size = 100
net = get_mnist_sym()
data_shape = (minibatch_size,) + X.shape[1::]
data_inputs = {'data': nd.zeros(data_shape, ctx=dev()),
'softmax_label': nd.zeros((minibatch_size,), ctx=dev())}
initializer = mx.init.Xavier(factor_type="in", magnitude=2.34)
exe, exe_params, _ = SGD(sym=net, dev=dev(), data_inputs=data_inputs, X=X, Y=Y,
X_test=X_test, Y_test=Y_test,
total_iter_num=1000000,
initializer=initializer,
lr=5E-6, prior_precision=1.0, minibatch_size=100)
示例7: run_mnist_SGLD
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def run_mnist_SGLD(training_num=50000):
X, Y, X_test, Y_test = load_mnist(training_num)
minibatch_size = 100
net = get_mnist_sym()
data_shape = (minibatch_size,) + X.shape[1::]
data_inputs = {'data': nd.zeros(data_shape, ctx=dev()),
'softmax_label': nd.zeros((minibatch_size,), ctx=dev())}
initializer = mx.init.Xavier(factor_type="in", magnitude=2.34)
exe, sample_pool = SGLD(sym=net, dev=dev(), data_inputs=data_inputs, X=X, Y=Y,
X_test=X_test, Y_test=Y_test,
total_iter_num=1000000,
initializer=initializer,
learning_rate=4E-6, prior_precision=1.0, minibatch_size=100,
thin_interval=100, burn_in_iter_num=1000)
示例8: run_mnist_DistilledSGLD
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def run_mnist_DistilledSGLD(training_num=50000):
X, Y, X_test, Y_test = load_mnist(training_num)
minibatch_size = 100
if training_num >= 10000:
num_hidden = 800
total_iter_num = 1000000
teacher_learning_rate = 1E-6
student_learning_rate = 0.0001
teacher_prior = 1
student_prior = 0.1
perturb_deviation = 0.1
else:
num_hidden = 400
total_iter_num = 20000
teacher_learning_rate = 4E-5
student_learning_rate = 0.0001
teacher_prior = 1
student_prior = 0.1
perturb_deviation = 0.001
teacher_net = get_mnist_sym(num_hidden=num_hidden)
logsoftmax = LogSoftmax()
student_net = get_mnist_sym(output_op=logsoftmax, num_hidden=num_hidden)
data_shape = (minibatch_size,) + X.shape[1::]
teacher_data_inputs = {'data': nd.zeros(data_shape, ctx=dev()),
'softmax_label': nd.zeros((minibatch_size,), ctx=dev())}
student_data_inputs = {'data': nd.zeros(data_shape, ctx=dev()),
'softmax_label': nd.zeros((minibatch_size, 10), ctx=dev())}
teacher_initializer = BiasXavier(factor_type="in", magnitude=1)
student_initializer = BiasXavier(factor_type="in", magnitude=1)
student_exe, student_params, _ = \
DistilledSGLD(teacher_sym=teacher_net, student_sym=student_net,
teacher_data_inputs=teacher_data_inputs,
student_data_inputs=student_data_inputs,
X=X, Y=Y, X_test=X_test, Y_test=Y_test, total_iter_num=total_iter_num,
student_initializer=student_initializer,
teacher_initializer=teacher_initializer,
student_optimizing_algorithm="adam",
teacher_learning_rate=teacher_learning_rate,
student_learning_rate=student_learning_rate,
teacher_prior_precision=teacher_prior, student_prior_precision=student_prior,
perturb_deviation=perturb_deviation, minibatch_size=100, dev=dev())
示例9: run_toy_HMC
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def run_toy_HMC():
X, Y, X_test, Y_test = load_toy()
minibatch_size = Y.shape[0]
noise_precision = 1 / 9.0
net = get_toy_sym(True, noise_precision)
data_shape = (minibatch_size,) + X.shape[1::]
data_inputs = {'data': nd.zeros(data_shape, ctx=dev()),
'teacher_output_label': nd.zeros((minibatch_size, 1), ctx=dev())}
initializer = mx.init.Uniform(0.07)
sample_pool = HMC(net, data_inputs=data_inputs, X=X, Y=Y, X_test=X_test, Y_test=Y_test,
sample_num=300000, initializer=initializer, prior_precision=1.0,
learning_rate=1E-3, L=10, dev=dev())
示例10: run_synthetic_SGLD
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def run_synthetic_SGLD():
theta1 = 0
theta2 = 1
sigma1 = numpy.sqrt(10)
sigma2 = 1
sigmax = numpy.sqrt(2)
X = load_synthetic(theta1=theta1, theta2=theta2, sigmax=sigmax, num=100)
minibatch_size = 1
total_iter_num = 1000000
lr_scheduler = SGLDScheduler(begin_rate=0.01, end_rate=0.0001, total_iter_num=total_iter_num,
factor=0.55)
optimizer = mx.optimizer.create('sgld',
learning_rate=None,
rescale_grad=1.0,
lr_scheduler=lr_scheduler,
wd=0)
updater = mx.optimizer.get_updater(optimizer)
theta = mx.random.normal(0, 1, (2,), mx.cpu())
grad = nd.empty((2,), mx.cpu())
samples = numpy.zeros((2, total_iter_num))
start = time.time()
for i in xrange(total_iter_num):
if (i + 1) % 100000 == 0:
end = time.time()
print("Iter:%d, Time spent: %f" % (i + 1, end - start))
start = time.time()
ind = numpy.random.randint(0, X.shape[0])
synthetic_grad(X[ind], theta, sigma1, sigma2, sigmax, rescale_grad=
X.shape[0] / float(minibatch_size), grad=grad)
updater('theta', grad, theta)
samples[:, i] = theta.asnumpy()
plt.hist2d(samples[0, :], samples[1, :], (200, 200), cmap=plt.cm.jet)
plt.colorbar()
plt.show()
示例11: update_acc_grad
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def update_acc_grad(self):
if self.acc_grad is None:
self.acc_grad = OrderedDict([(n, nd.zeros(v.shape, ctx=self.ctx))
for n, v in self.params_grad.items()])
for k, v in self.acc_grad.items():
v[:] = v + self.params_grad[k]
示例12: get_ndarray
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def get_ndarray(self, context, name, shape):
key = "%s_%s"%(name, context)
#print(key)
if not key in self._nd_cache:
v = nd.zeros( shape=shape, ctx = context)
self._nd_cache[key] = v
else:
v = self._nd_cache[key]
return v
示例13: get_ndarray2
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def get_ndarray2(self, context, name, arr):
key = "%s_%s"%(name, context)
#print(key)
if not key in self._nd_cache:
v = nd.zeros( shape=arr.shape, ctx = context)
self._nd_cache[key] = v
else:
v = self._nd_cache[key]
arr.copyto(v)
return v
示例14: get_feature
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def get_feature(name, vid, args):
global feature_cache
key = (name,vid)
if key in feature_cache:
return feature_cache[key]
input_dir = os.path.join(args.image_dir, name, str(vid))
data = nd.zeros( (1 ,3, image_size[0], image_size[1]) )
F = []
for img in os.listdir(input_dir):
img = os.path.join(input_dir, img)
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2,0,1))
data[0][:] = img
db = mx.io.DataBatch(data=(data,))
model.forward(db, is_train=False)
net_out = model.get_outputs()[0].asnumpy().flatten()
F.append(net_out)
F = np.array(F)
F = sklearn.preprocessing.normalize(F)
feature = np.mean(F, axis=0, keepdims=True)
feature = sklearn.preprocessing.normalize(feature).flatten()
feature_cache[key] = feature
return feature
示例15: zeros
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import zeros [as 別名]
def zeros(shape, dtype, ctx):
return nd.zeros(shape, dtype=dtype, ctx=ctx)