當前位置: 首頁>>代碼示例>>Python>>正文


Python ndarray.sum方法代碼示例

本文整理匯總了Python中mxnet.ndarray.sum方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.sum方法的具體用法?Python ndarray.sum怎麽用?Python ndarray.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: unsorted_1d_segment_sum

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def unsorted_1d_segment_sum(input, seg_id, n_segs, dim):
    # TODO: support other dimensions
    assert dim == 0, 'MXNet only supports segment sum on first dimension'

    # Use SPMV to simulate segment sum
    ctx = input.context
    n_inputs = input.shape[0]
    input_shape_suffix = input.shape[1:]
    input = input.reshape(n_inputs, -1)
    n_range = nd.arange(n_inputs, dtype='int64').as_in_context(input.context)
    w_nnz = nd.ones(n_inputs).as_in_context(input.context)
    w_nid = nd.stack(seg_id, n_range, axis=0)
    w = nd.sparse.csr_matrix((w_nnz, (seg_id, n_range)), (n_segs, n_inputs))
    w = w.as_in_context(input.context)
    y = nd.dot(w, input)
    y = nd.reshape(y, (n_segs,) + input_shape_suffix)
    return y 
開發者ID:dmlc,項目名稱:dgl,代碼行數:19,代碼來源:tensor.py

示例2: get_rmse_log

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def get_rmse_log(net, X_train, y_train):
    """Gets root mse between the logarithms of the prediction and the truth."""
    num_train = X_train.shape[0]
    clipped_preds = nd.clip(net(X_train), 1, float('inf'))
    return np.sqrt(2 * nd.sum(square_loss(
        nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:8,代碼來源:kaggle_k_fold_cross_validation.py

示例3: contrast_aug

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def contrast_aug(self, src, x):
      alpha = 1.0 + random.uniform(-x, x)
      coef = nd.array([[[0.299, 0.587, 0.114]]])
      gray = src * coef
      gray = (3.0 * (1.0 - alpha) / gray.size) * nd.sum(gray)
      src *= alpha
      src += gray
      return src 
開發者ID:deepinsight,項目名稱:insightface,代碼行數:10,代碼來源:image_iter.py

示例4: saturation_aug

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def saturation_aug(self, src, x):
      alpha = 1.0 + random.uniform(-x, x)
      coef = nd.array([[[0.299, 0.587, 0.114]]])
      gray = src * coef
      gray = nd.sum(gray, axis=2, keepdims=True)
      gray *= (1.0 - alpha)
      src *= alpha
      src += gray
      return src 
開發者ID:deepinsight,項目名稱:insightface,代碼行數:11,代碼來源:image_iter.py

示例5: sum

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def sum(input, dim, keepdims=False):
    return nd.sum(input, axis=dim, keepdims=keepdims) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:tensor.py

示例6: reduce_sum

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def reduce_sum(input):
    return input.sum() 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:tensor.py

示例7: backward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def backward(self, grad_out):
        lhs_data_nd, rhs_data_nd, out_data_nd, feat_shape, degs = self.saved_tensors
        if self.reducer == 'mean':
            grad_out = grad_out / degs
        grad_out_nd = zerocopy_to_dgl_ndarray(grad_out)
        grad_lhs = nd.empty((lhs_data_nd.shape[0],) + feat_shape,
                            ctx=grad_out.context, dtype=grad_out.dtype)
        K.backward_lhs_binary_op_reduce(
            self.reducer if self.reducer != 'mean' else 'sum',
            self.binary_op, self.graph, self.lhs, self.rhs,
            lhs_data_nd, rhs_data_nd, out_data_nd, grad_out_nd,
            zerocopy_to_dgl_ndarray_for_write(grad_lhs), self.lhs_map[1],
            self.rhs_map[1], self.out_map[1])
        grad_lhs = _reduce_grad(grad_lhs, lhs_data_nd.shape)
        grad_rhs = nd.empty((rhs_data_nd.shape[0],) + feat_shape,
                             ctx=grad_out.context, dtype=grad_out.dtype)
        K.backward_rhs_binary_op_reduce(
            self.reducer if self.reducer != 'mean' else 'sum',
            self.binary_op, self.graph, self.lhs, self.rhs,
            lhs_data_nd, rhs_data_nd, out_data_nd, grad_out_nd,
            zerocopy_to_dgl_ndarray_for_write(grad_rhs), self.lhs_map[1],
            self.rhs_map[1], self.out_map[1])
        grad_rhs = _reduce_grad(grad_rhs, rhs_data_nd.shape)
        # clear saved tensors explicitly
        self.saved_tensors = None
        return grad_lhs, grad_rhs 
開發者ID:dmlc,項目名稱:dgl,代碼行數:28,代碼來源:tensor.py

示例8: _reduce_grad

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def _reduce_grad(grad, shape):
    """Reduce gradient on the broadcast dimension

    If there is broadcast in forward pass, gradients need to be reduced on
    broadcast dimension. This function checks the input tensor shape and
    gradient shape and perform the reduction.

    Parameters
    ----------
    grad: Tensor
        Gradient tensor
    shape: tuple
        Shape of input tensor

    Returns
    -------
    Tensor
    """
    grad_shape = grad.shape[1:]
    in_shape = shape[1:]
    if in_shape == grad_shape:
        # no need to reduce
        return grad
    num_to_squeeze = len(grad_shape) - len(in_shape)
    # pad in_shape
    in_shape = (1,) * num_to_squeeze + in_shape
    reduce_idx = np.nonzero(np.asarray(grad_shape) - np.asarray(in_shape))[0]
    reduce_idx += 1  # skip batch dim
    grad = grad.sum(axis=tuple(reduce_idx), keepdims=True)
    return grad.reshape(shape) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:32,代碼來源:tensor.py

示例9: is_no_grad

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def is_no_grad(x):
    return (x != 0).sum() == 0 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:tensor.py

示例10: reduce_sum

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def reduce_sum(x):
    return x.sum() 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:__init__.py

示例11: sum

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def sum(x, dim, keepdims=False):
    return x.sum(dim, keepdims=keepdims) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:__init__.py

示例12: edge_func

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def edge_func(self, edges):
        head = edges.src['emb']
        tail = edges.dst['emb']
        rel = edges.data['emb']
        score = head * rel * tail
        # TODO: check if there exists minus sign and if gamma should be used here(jin)
        return {'score': nd.sum(score, axis=-1)} 
開發者ID:dmlc,項目名稱:dgl,代碼行數:9,代碼來源:score_fun.py

示例13: hybrid_forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def hybrid_forward(self, F, preds, label):
        label = label.astype('float32')
        dist = F.sqrt(F.sum(F.square(preds), axis=1))

        return label * F.square(dist) + (1 - label) * F.square(F.max(self._m - dist, 0)) 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:7,代碼來源:custom_layers.py

示例14: log_pdf

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def log_pdf(self, y):
        return nd.sum(nd.nansum(y * nd.log_softmax(self.unnormalized_mean), axis=0, exclude=True)) 
開發者ID:amzn,項目名稱:xfer,代碼行數:4,代碼來源:obs.py

示例15: log_pdf

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import sum [as 別名]
def log_pdf(self, obs):
        self.check_observation_shapes(obs)
        raw_params_ext = self._replicate_shared_parameters()
        return sum([nd.sum(log_gaussian(obs[ii], raw_params_ext["mean"][ii], raw_params_ext["sigma"][ii]))
                    for ii in range(len(self.shapes))]) 
開發者ID:amzn,項目名稱:xfer,代碼行數:7,代碼來源:prior.py


注:本文中的mxnet.ndarray.sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。