當前位置: 首頁>>代碼示例>>Python>>正文


Python ndarray.softmax方法代碼示例

本文整理匯總了Python中mxnet.ndarray.softmax方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.softmax方法的具體用法?Python ndarray.softmax怎麽用?Python ndarray.softmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.softmax方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: inference

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import softmax [as 別名]
def inference(self):
        inputs = self.static_inputs[1]
        hidden = self.static_init_hidden[1]
        actions = []
        for block_idx in range(len(self.num_tokens)):
            logits, hidden = self.forward(inputs, hidden,
                                          block_idx, is_embed=(block_idx==0))
            probs = F.softmax(logits, axis=-1)
            action = mx.nd.argmax(probs, 1)
            actions.append(action)
            inputs = action + sum(self.num_tokens[:block_idx])
            inputs.detach()

        config = {}
        for i, action in enumerate(actions):
            choice = action.asscalar()
            k, space = self.spaces[i]
            config[k] = int(choice)

        return config 
開發者ID:awslabs,項目名稱:autogluon,代碼行數:22,代碼來源:rl_controller.py

示例2: forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import softmax [as 別名]
def forward(self, x):
        x = self.dense(x)
        probs = self.action_pred(x)
        values = self.value_pred(x)
        return F.softmax(probs), values 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:7,代碼來源:actor_critic.py

示例3: softmax

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import softmax [as 別名]
def softmax(input, dim=-1):
    return nd.softmax(input, axis=dim) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:tensor.py

示例4: softmax

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import softmax [as 別名]
def softmax(x, dim):
    return nd.softmax(x, axis=dim) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:__init__.py

示例5: test

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import softmax [as 別名]
def test(ctx, val_data, opt, net):
    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)

    for i, batch in enumerate(val_data):
        data, label = batch_fn(batch, ctx)
        outputs = []
        for _, X in enumerate(data):
            X = X.reshape((-1,) + X.shape[2:])
            pred = net(X.astype(opt.dtype, copy=False))
            if opt.use_softmax:
                pred = F.softmax(pred, axis=1)
            outputs.append(pred)

        acc_top1.update(label, outputs)
        acc_top5.update(label, outputs)
        mx.ndarray.waitall()

        _, cur_top1 = acc_top1.get()
        _, cur_top5 = acc_top5.get()

        if i > 0 and i % opt.log_interval == 0:
            print('%04d/%04d is done: acc-top1=%f acc-top5=%f' % (i, len(val_data), cur_top1*100, cur_top5*100))

    _, top1 = acc_top1.get()
    _, top5 = acc_top5.get()
    return (top1, top5) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:29,代碼來源:test_recognizer.py

示例6: hybrid_forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import softmax [as 別名]
def hybrid_forward(self, F, input_logits, target_logits, sample_weight=None):
        input_softmax = F.softmax(input_logits, axis=1)
        target_softmax = F.softmax(target_logits, axis=1)

        loss = F.square(input_softmax - target_softmax)

        return F.mean(loss, axis=self._batch_axis, exclude=True) 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:9,代碼來源:custom_layers.py

示例7: generate_text

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import softmax [as 別名]
def generate_text(model, seed, length=512, top_n=10):
    """
    generates text of specified length from trained model
    with given seed character sequence.
    """
    logger.info("generating %s characters from top %s choices.", length, top_n)
    logger.info('generating with seed: "%s".', seed)
    generated = seed
    encoded = mx.nd.array(encode_text(seed))
    seq_len = encoded.shape[0]

    x = F.expand_dims(encoded[:seq_len-1], 1)
    # input shape: [seq_len, 1]
    state = model.begin_state()
    # get rnn state due to seed sequence
    _, state = model(x, state)

    next_index = encoded[seq_len-1].asscalar()
    for i in range(length):
        x = mx.nd.array([[next_index]])
        # input shape: [1, 1]
        logit, state = model(x, state)
        # output shape: [1, vocab_size]
        probs = F.softmax(logit)
        next_index = sample_from_probs(probs.asnumpy().squeeze(), top_n)
        # append to sequence
        generated += ID2CHAR[next_index]

    logger.info("generated text: \n%s\n", generated)
    return generated 
開發者ID:yxtay,項目名稱:char-rnn-text-generation,代碼行數:32,代碼來源:mxnet_model.py

示例8: sample

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import softmax [as 別名]
def sample(self, batch_size=1, with_details=False, with_entropy=False):
        """
        Returns
        -------
        configs : list of dict
            list of configurations
        """
        inputs = self.static_inputs[batch_size]
        hidden = self.static_init_hidden[batch_size]

        actions = []
        entropies = []
        log_probs = []

        for idx in range(len(self.num_tokens)):
            logits, hidden = self.forward(inputs, hidden,
                                          idx, is_embed=(idx==0))

            probs = F.softmax(logits, axis=-1)
            log_prob = F.log_softmax(logits, axis=-1)
            entropy = -(log_prob * probs).sum(1, keepdims=False) if with_entropy else None

            action = mx.random.multinomial(probs, 1)
            ind = mx.nd.stack(mx.nd.arange(probs.shape[0], ctx=action.context),
                              action.astype('float32'))
            selected_log_prob = F.gather_nd(log_prob, ind)

            actions.append(action[:, 0])
            entropies.append(entropy)
            log_probs.append(selected_log_prob)

            inputs = action[:, 0] + sum(self.num_tokens[:idx])
            inputs.detach()

        configs = []
        for idx in range(batch_size):
            config = {}
            for i, action in enumerate(actions):
                choice = action[idx].asscalar()
                k, space = self.spaces[i]
                config[k] = int(choice)
            configs.append(config)

        if with_details:
            entropies = F.stack(*entropies, axis=1) if with_entropy else entropies
            return configs, F.stack(*log_probs, axis=1), entropies
        else:
            return configs 
開發者ID:awslabs,項目名稱:autogluon,代碼行數:50,代碼來源:rl_controller.py


注:本文中的mxnet.ndarray.softmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。