當前位置: 首頁>>代碼示例>>Python>>正文


Python ndarray.relu方法代碼示例

本文整理匯總了Python中mxnet.ndarray.relu方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.relu方法的具體用法?Python ndarray.relu怎麽用?Python ndarray.relu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.relu方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: demo

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def demo(self, x_low, x_high):
        self._up_kwargs['height'] = x_high.shape[2]
        self._up_kwargs['width'] = x_high.shape[3]

        import mxnet.ndarray as F
        x_low = F.contrib.BilinearResize2D(x_low,
                                           height=self._up_kwargs['height'],
                                           width=self._up_kwargs['width'])
        x_low = self.conv_low(x_low)
        x_high = self.conv_hign(x_high)

        x = x_low + x_high
        x = F.relu(x)

        x_low_cls = self.conv_low_cls(x_low)
        return x, x_low_cls 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:18,代碼來源:icnet.py

示例2: predict

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def predict(self, x):
        import mxnet.ndarray as F
        x_sub1_out = self.conv_sub1(x)

        x_sub2 = F.contrib.BilinearResize2D(x, height=x.shape[2] // 2, width=x.shape[3] // 2)
        x = self.conv1(x_sub2)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x_sub2_out = self.layer2(x)

        x_sub4 = F.contrib.BilinearResize2D(x_sub2_out,
                                            height=x_sub2_out.shape[2] // 2,
                                            width=x_sub2_out.shape[3] // 2)
        x = self.layer3(x_sub4)
        x = self.layer4(x)
        x_sub4_out = self.psp_head(x)

        x_sub4_out = self.conv_sub4(x_sub4_out)
        x_sub2_out = self.conv_sub2(x_sub2_out)
        res = self.head(x_sub1_out, x_sub2_out, x_sub4_out)
        return res[0] 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:25,代碼來源:oth_icnet.py

示例3: build_input_layer

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def build_input_layer(self):
        return RelGraphConv(self.num_nodes, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:6,代碼來源:entity_classify.py

示例4: build_hidden_layer

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def build_hidden_layer(self, idx):
        return RelGraphConv(self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:6,代碼來源:entity_classify.py

示例5: hybrid_forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def hybrid_forward(self, F, x):
        # large resolution branch
        x_sub1_out = self.conv_sub1(x)

        # medium resolution branch
        x_sub2 = F.contrib.BilinearResize2D(x,
                                            height=self._up_kwargs['height'] // 2,
                                            width=self._up_kwargs['width'] // 2)
        x = self.conv1(x_sub2)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x_sub2_out = self.layer2(x)

        # small resolution branch
        x_sub4 = F.contrib.BilinearResize2D(x_sub2_out,
                                            height=self._up_kwargs['height'] // 32,
                                            width=self._up_kwargs['width'] // 32)
        x = self.layer3(x_sub4)
        x = self.layer4(x)
        x_sub4_out = self.psp_head(x)

        # reduce conv
        x_sub4_out = self.conv_sub4(x_sub4_out)
        x_sub2_out = self.conv_sub2(x_sub2_out)

        # ICNet head
        res = self.head(x_sub1_out, x_sub2_out, x_sub4_out)
        return res 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:32,代碼來源:icnet.py

示例6: predict

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def predict(self, x):
        h, w = x.shape[2:]
        self._up_kwargs['height'] = h
        self._up_kwargs['width'] = w

        import mxnet.ndarray as F
        x_sub1_out = self.conv_sub1(x)

        x_sub2 = F.contrib.BilinearResize2D(x,
                                            height=self._up_kwargs['height'] // 2,
                                            width=self._up_kwargs['width'] // 2)
        x = self.conv1(x_sub2)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x_sub2_out = self.layer2(x)

        x_sub4 = F.contrib.BilinearResize2D(x_sub2_out,
                                            height=self._up_kwargs['height'] // 32,
                                            width=self._up_kwargs['width'] // 32)
        x = self.layer3(x_sub4)
        x = self.layer4(x)
        x_sub4_out = self.psp_head.demo(x)

        x_sub4_out = self.conv_sub4(x_sub4_out)
        x_sub2_out = self.conv_sub2(x_sub2_out)
        res = self.head.demo(x_sub1_out, x_sub2_out, x_sub4_out)
        return res[0] 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:31,代碼來源:icnet.py

示例7: __init__

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def __init__(self, in_planes, out_planes, ksize, stride=1, pad=0, dilation=1,
                 groups=1, has_bn=True, norm_layer=nn.BatchNorm, bn_eps=1e-5,
                 has_relu=True, has_bias=False, **kwargs):
        super(ConvBnRelu, self).__init__()
        with self.name_scope():
            self.conv = nn.Conv2D(in_channels=in_planes, channels=out_planes,
                                  kernel_size=ksize, padding=pad, strides=stride,
                                  dilation=dilation, groups=groups, use_bias=has_bias)
            self.has_bn = has_bn
            self.has_relu = has_relu

            if self.has_bn:
                self.bn = norm_layer(in_channels=out_planes, epsilon=bn_eps)
            if self.has_relu:
                self.relu = nn.Activation('relu') 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:17,代碼來源:icnet.py

示例8: hybrid_forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def hybrid_forward(self, F, fts, ys, ftt, yt):
        """
        Semantic Alignment Loss
        :param F: Function
        :param yt: label for the target domain [N]
        :param ftt: features for the target domain [N, K]
        :param ys: label for the source domain [M]
        :param fts: features for the source domain [M, K]
        :return:
        """
        if self._fn:
            # Normalize ft
            fts = F.L2Normalization(fts, mode='instance')
            ftt = F.L2Normalization(ftt, mode='instance')

        fts_rpt = F.broadcast_to(fts.expand_dims(axis=0), shape=(self._bs_tgt, self._bs_src, self._embed_size))
        ftt_rpt = F.broadcast_to(ftt.expand_dims(axis=1), shape=(self._bs_tgt, self._bs_src, self._embed_size))

        dists = F.sum(F.square(ftt_rpt - fts_rpt), axis=2)

        yt_rpt = F.broadcast_to(yt.expand_dims(axis=1), shape=(self._bs_tgt, self._bs_src)).astype('int32')
        ys_rpt = F.broadcast_to(ys.expand_dims(axis=0), shape=(self._bs_tgt, self._bs_src)).astype('int32')

        y_same = F.equal(yt_rpt, ys_rpt).astype('float32')
        y_diff = F.not_equal(yt_rpt, ys_rpt).astype('float32')

        intra_cls_dists = dists * y_same
        inter_cls_dists = dists * y_diff

        max_dists = F.max(dists, axis=1, keepdims=True)
        max_dists = F.broadcast_to(max_dists, shape=(self._bs_tgt, self._bs_src))
        revised_inter_cls_dists = F.where(y_same, max_dists, inter_cls_dists)

        max_intra_cls_dist = F.max(intra_cls_dists, axis=1)
        min_inter_cls_dist = F.min(revised_inter_cls_dists, axis=1)

        loss = F.relu(max_intra_cls_dist - min_inter_cls_dist + self._margin)

        return loss 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:41,代碼來源:custom_layers.py

示例9: hybrid_forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def hybrid_forward(self, F, x):
        # large resolution branch --> (1, 3, 480, 480)
        x_sub1_out = self.conv_sub1(x)  # --> (1, 64, 60, 60)

        # medium resolution branch --> (1, 3, 240, 240)
        x_sub2 = F.contrib.BilinearResize2D(x,
                                            height=self._up_kwargs['height'] // 2,
                                            width=self._up_kwargs['width'] // 2)
        x = self.conv1(x_sub2)  # --> (1, 128, 120, 120)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)  # --> (1, 128, 60, 60)
        x = self.layer1(x)  # --> (1, 256, 60, 60)
        x_sub2_out = self.layer2(x)  # --> (1, 512, 30, 30)

        # small resolution branch --> (1, 512, 15, 15)
        x_sub4 = F.contrib.BilinearResize2D(x_sub2_out,
                                            height=self._up_kwargs['height'] // 32,
                                            width=self._up_kwargs['width'] // 32)
        x = self.layer3(x_sub4)  # --> (1, 1024, 15, 15)
        x = self.layer4(x)  # --> (1, 2048, 15, 15)
        x_sub4_out = self.psp_head(x)  # --> (1, 512, 15, 15)

        # reduce conv
        x_sub4_out = self.conv_sub4(x_sub4_out)  # --> (1, 256, 15, 15)
        x_sub2_out = self.conv_sub2(x_sub2_out)  # --> (1, 256, 30, 30)

        # ICNet head
        res = self.head(x_sub1_out, x_sub2_out, x_sub4_out)
        return res 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:32,代碼來源:oth_icnet.py

示例10: demo

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import relu [as 別名]
def demo(self, x_low, x_high):
        import mxnet.ndarray as F
        x_low = F.contrib.BilinearResize2D(x_low, height=x_high.shape[2], width=x_high.shape[3])
        x_low = self.conv_low(x_low)
        x_high = self.conv_hign(x_high)

        x = x_low + x_high
        x = F.relu(x)

        x_low_cls = self.conv_low_cls(x_low)
        return x, x_low_cls 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:13,代碼來源:oth_icnet.py


注:本文中的mxnet.ndarray.relu方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。