本文整理匯總了Python中mxnet.ndarray.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.ones方法的具體用法?Python ndarray.ones怎麽用?Python ndarray.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet.ndarray
的用法示例。
在下文中一共展示了ndarray.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_out_grads
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_out_grads():
x = nd.ones((3, 5))
dx = nd.zeros_like(x)
mark_variables([x], [dx])
da = None
db = nd.array([1,2,3,4,5])
dc = nd.array([5,4,3,2,1])
with record():
a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True)
backward([a, b, c], [da, db, dc])
assert (dx.asnumpy() == np.array(
[[1,1,1,1,1],
[1,2,3,4,5],
[5,4,3,2,1]])).all()
示例2: test_sparse_dot_grad
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_sparse_dot_grad():
def check_sparse_dot_grad(rhs):
lhs = rand_ndarray((2, 8), 'csr')
with mx.autograd.record():
y = mx.nd.dot(lhs, rhs)
y.backward()
grad = rhs.grad
grad_np = np.dot(lhs.asnumpy().T, np.ones((lhs.shape[0], rhs.shape[1])))
assert grad.stype == 'row_sparse'
assert_almost_equal(grad.asnumpy(), grad_np)
# check grad with row_sparse weight
shape = (8, 3)
rsp = mx.nd.ones(shape).tostype('row_sparse')
rsp.attach_grad()
check_sparse_dot_grad(rsp)
# check grad with dense weight
dns = mx.nd.ones(shape)
dns.attach_grad(stype='row_sparse')
check_sparse_dot_grad(dns)
示例3: test_module_dtype
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_module_dtype():
dtype = np.float16
dshape = (3, 8, 7)
sym = mx.sym.Variable('data')
sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC')
mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)])
mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, dtype, layout='TNC')])
mod.init_params()
mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape, dtype=dtype)],
label=None))
mod.backward([mx.nd.ones(dshape, dtype=dtype)])
for x in mod.get_outputs():
assert x.dtype == dtype
示例4: test_module_input_grads
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_module_input_grads():
a = mx.sym.Variable('a', __layout__='NC')
b = mx.sym.Variable('b', __layout__='NC')
c = mx.sym.Variable('c', __layout__='NC')
c = a + 2 * b + 3 * c
net = mx.mod.Module(c, data_names=['b', 'c', 'a'], label_names=None,
context=[mx.cpu(0), mx.cpu(1)])
net.bind(data_shapes=[['b', (5, 5)], ['c', (5, 5)], ['a', (5, 5)]],
label_shapes=None, inputs_need_grad=True)
net.init_params()
net.forward(data_batch=mx.io.DataBatch(data=[nd.ones((5, 5)),
nd.ones((5, 5)),
nd.ones((5, 5))]))
net.backward(out_grads=[nd.ones((5, 5))])
input_grads = net.get_input_grads()
b_grad = input_grads[0].asnumpy()
c_grad = input_grads[1].asnumpy()
a_grad = input_grads[2].asnumpy()
assert np.all(a_grad == 1), a_grad
assert np.all(b_grad == 2), b_grad
assert np.all(c_grad == 3), c_grad
示例5: test_module_layout
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_module_layout():
sym = mx.sym.Variable('data')
sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC')
dshape = (3, 8, 7)
mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)])
mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, layout='TNC')])
mod.init_params()
mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)],
label=None))
mod.backward([mx.nd.ones(dshape)])
assert mod.get_outputs()[0].shape == dshape
hdshape = (3, 4, 7)
for x in mod.get_outputs(merge_multi_context=False)[0]:
assert x.shape == hdshape
示例6: test_module_reshape
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_module_reshape():
data = mx.sym.Variable('data')
sym = mx.sym.FullyConnected(data, num_hidden=20, name='fc')
dshape = (7, 20)
mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)])
mod.bind(data_shapes=[('data', dshape)])
mod.init_params()
mod.init_optimizer(optimizer_params={'learning_rate': 1})
mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)],
label=None))
mod.backward([mx.nd.ones(dshape)])
mod.update()
assert mod.get_outputs()[0].shape == dshape
assert (mod.get_params()[0]['fc_bias'].asnumpy() == -1).all()
dshape = (14, 20)
mod.reshape(data_shapes=[('data', dshape)])
mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)],
label=None))
mod.backward([mx.nd.ones(dshape)])
mod.update()
assert mod.get_outputs()[0].shape == dshape
assert (mod.get_params()[0]['fc_bias'].asnumpy() == -3).all()
示例7: test_forward_types
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_forward_types():
#Test forward with other data batch API
Batch = namedtuple('Batch', ['data'])
data = mx.sym.Variable('data')
out = data * 2
mod = mx.mod.Module(symbol=out, label_names=None)
mod.bind(data_shapes=[('data', (1, 10))])
mod.init_params()
data1 = [mx.nd.ones((1, 10))]
mod.forward(Batch(data1))
assert mod.get_outputs()[0].shape == (1, 10)
data2 = [mx.nd.ones((3, 5))]
mod.forward(Batch(data2))
assert mod.get_outputs()[0].shape == (3, 5)
#Test forward with other NDArray and np.ndarray inputs
data = mx.sym.Variable('data')
out = data * 2
mod = mx.mod.Module(symbol=out, label_names=None)
mod.bind(data_shapes=[('data', (1, 10))])
mod.init_params()
data1 = mx.nd.ones((1, 10))
assert mod.predict(data1).shape == (1, 10)
data2 = np.ones((1, 10))
assert mod.predict(data1).shape == (1, 10)
示例8: test_out_grads
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_out_grads():
x = nd.ones((3, 5))
dx = nd.zeros_like(x)
mark_variables([x], [dx])
da = None
db = nd.array([1,2,3,4,5])
dc = nd.array([5,4,3,2,1])
with train_section():
a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True)
backward([a, b, c], [da, db, dc])
assert (dx.asnumpy() == np.array(
[[1,1,1,1,1],
[1,2,3,4,5],
[5,4,3,2,1]])).all()
示例9: unsorted_1d_segment_sum
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def unsorted_1d_segment_sum(input, seg_id, n_segs, dim):
# TODO: support other dimensions
assert dim == 0, 'MXNet only supports segment sum on first dimension'
# Use SPMV to simulate segment sum
ctx = input.context
n_inputs = input.shape[0]
input_shape_suffix = input.shape[1:]
input = input.reshape(n_inputs, -1)
n_range = nd.arange(n_inputs, dtype='int64').as_in_context(input.context)
w_nnz = nd.ones(n_inputs).as_in_context(input.context)
w_nid = nd.stack(seg_id, n_range, axis=0)
w = nd.sparse.csr_matrix((w_nnz, (seg_id, n_range)), (n_segs, n_inputs))
w = w.as_in_context(input.context)
y = nd.dot(w, input)
y = nd.reshape(y, (n_segs,) + input_shape_suffix)
return y
示例10: test_binary_func
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_binary_func():
def check_binary_func(x, y):
f_add = lambda x, y: x+y
f_add_grad = lambda x, y: [nd.ones(x.shape), nd.ones(y.shape)]
autograd_assert(x, y, func=f_add, grad_func=f_add_grad)
f_mul = lambda x, y: x*y
f_mul_grad = lambda x, y: [y, x]
autograd_assert(x, y, func=f_mul, grad_func=f_mul_grad)
f_compose = lambda x, y: x+x*y
f_compose_grad = lambda x, y: [nd.ones(x.shape) + y, x]
autograd_assert(x, y, func=f_compose, grad_func=f_compose_grad)
uniform_x = nd.uniform(shape=(4, 5))
uniform_y = nd.uniform(shape=(4, 5))
stypes = ['default', 'row_sparse', 'csr']
for stype_x in stypes:
for stype_y in stypes:
x = uniform_x.tostype(stype_x)
y = uniform_y.tostype(stype_y)
check_binary_func(x, y)
示例11: _init_NDArrayIter_data
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def _init_NDArrayIter_data(data_type, is_image=False):
if is_image:
data = nd.random.uniform(0, 255, shape=(5000, 1, 28, 28))
labels = nd.ones((5000, 1))
return data, labels
if data_type == 'NDArray':
data = nd.ones((1000, 2, 2))
labels = nd.ones((1000, 1))
else:
data = np.ones((1000, 2, 2))
labels = np.ones((1000, 1))
for i in range(1000):
data[i] = i / 100
labels[i] = i / 100
return data, labels
示例12: test_DataBatch
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_DataBatch():
from nose.tools import ok_
from mxnet.io import DataBatch
import re
batch = DataBatch(data=[mx.nd.ones((2, 3))])
ok_(re.match(
'DataBatch: data shapes: \[\(2L?, 3L?\)\] label shapes: None', str(batch)))
batch = DataBatch(data=[mx.nd.ones((2, 3)), mx.nd.ones(
(7, 8))], label=[mx.nd.ones((4, 5))])
ok_(re.match(
'DataBatch: data shapes: \[\(2L?, 3L?\), \(7L?, 8L?\)\] label shapes: \[\(4L?, 5L?\)\]', str(batch)))
示例13: test_CSVIter
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_CSVIter():
def check_CSVIter_synthetic(dtype='float32'):
cwd = os.getcwd()
data_path = os.path.join(cwd, 'data.t')
label_path = os.path.join(cwd, 'label.t')
entry_str = '1'
if dtype is 'int32':
entry_str = '200000001'
if dtype is 'int64':
entry_str = '2147483648'
with open(data_path, 'w') as fout:
for i in range(1000):
fout.write(','.join([entry_str for _ in range(8*8)]) + '\n')
with open(label_path, 'w') as fout:
for i in range(1000):
fout.write('0\n')
data_train = mx.io.CSVIter(data_csv=data_path, data_shape=(8, 8),
label_csv=label_path, batch_size=100, dtype=dtype)
expected = mx.nd.ones((100, 8, 8), dtype=dtype) * int(entry_str)
for batch in iter(data_train):
data_batch = data_train.getdata()
assert_almost_equal(data_batch.asnumpy(), expected.asnumpy())
assert data_batch.asnumpy().dtype == expected.asnumpy().dtype
for dtype in ['int32', 'int64', 'float32']:
check_CSVIter_synthetic(dtype=dtype)
示例14: test_unary_func
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_unary_func():
def check_unary_func(x):
f_exp = lambda x: nd.exp(x)
f_exp_grad = lambda x: [nd.exp(x)]
autograd_assert(x, func=f_exp, grad_func=f_exp_grad)
f_half = lambda x: x/2
f_half_grad = lambda x: [nd.ones(x.shape) * 0.5]
autograd_assert(x, func=f_half, grad_func=f_half_grad)
f_square = lambda x: x**2
f_square_grad = lambda x: [2*x]
autograd_assert(x, func=f_square, grad_func=f_square_grad)
uniform = nd.uniform(shape=(4, 5))
stypes = ['default', 'row_sparse', 'csr']
for stype in stypes:
check_unary_func(uniform.tostype(stype))
示例15: test_argnum
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_argnum():
def f_with_mode(a, b, mode):
if mode:
return a+b
else:
return a*b
a = nd.uniform(shape=(3, 2))
b = nd.uniform(shape=(3, 2))
f_add_grad = lambda x, y, mode: [nd.ones(x.shape), nd.ones(y.shape)]
f_mul_grad = lambda x, y, mode: [y, x]
autograd_assert(a, b, True,
argnum=[0, 1], func=f_with_mode, grad_func=f_add_grad)
autograd_assert(a, b, False,
argnum=[0, 1], func=f_with_mode, grad_func=f_mul_grad)