當前位置: 首頁>>代碼示例>>Python>>正文


Python ndarray.ones方法代碼示例

本文整理匯總了Python中mxnet.ndarray.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.ones方法的具體用法?Python ndarray.ones怎麽用?Python ndarray.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_out_grads

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_out_grads():
    x = nd.ones((3, 5))
    dx = nd.zeros_like(x)
    mark_variables([x], [dx])
    da = None
    db = nd.array([1,2,3,4,5])
    dc = nd.array([5,4,3,2,1])

    with record():
        a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True)
        backward([a, b, c], [da, db, dc])

    assert (dx.asnumpy() == np.array(
        [[1,1,1,1,1],
         [1,2,3,4,5],
         [5,4,3,2,1]])).all() 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_autograd.py

示例2: test_sparse_dot_grad

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_sparse_dot_grad():
    def check_sparse_dot_grad(rhs):
        lhs = rand_ndarray((2, 8), 'csr')
        with mx.autograd.record():
            y = mx.nd.dot(lhs, rhs)
        y.backward()
        grad = rhs.grad
        grad_np = np.dot(lhs.asnumpy().T, np.ones((lhs.shape[0], rhs.shape[1])))
        assert grad.stype == 'row_sparse'
        assert_almost_equal(grad.asnumpy(), grad_np)

    # check grad with row_sparse weight
    shape = (8, 3)
    rsp = mx.nd.ones(shape).tostype('row_sparse')
    rsp.attach_grad()
    check_sparse_dot_grad(rsp)

    # check grad with dense weight
    dns = mx.nd.ones(shape)
    dns.attach_grad(stype='row_sparse')
    check_sparse_dot_grad(dns) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:test_autograd.py

示例3: test_module_dtype

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_module_dtype():
    dtype = np.float16
    dshape = (3, 8, 7)

    sym = mx.sym.Variable('data')
    sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC')

    mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)])
    mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, dtype, layout='TNC')])
    mod.init_params()
    mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape, dtype=dtype)],
                              label=None))
    mod.backward([mx.nd.ones(dshape, dtype=dtype)])

    for x in mod.get_outputs():
      assert x.dtype == dtype 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_module.py

示例4: test_module_input_grads

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_module_input_grads():
    a = mx.sym.Variable('a', __layout__='NC')
    b = mx.sym.Variable('b', __layout__='NC')
    c = mx.sym.Variable('c', __layout__='NC')

    c = a + 2 * b + 3 * c
    net = mx.mod.Module(c, data_names=['b', 'c', 'a'], label_names=None,
                        context=[mx.cpu(0), mx.cpu(1)])
    net.bind(data_shapes=[['b', (5, 5)], ['c', (5, 5)], ['a', (5, 5)]],
             label_shapes=None, inputs_need_grad=True)
    net.init_params()

    net.forward(data_batch=mx.io.DataBatch(data=[nd.ones((5, 5)),
                                                 nd.ones((5, 5)),
                                                 nd.ones((5, 5))]))
    net.backward(out_grads=[nd.ones((5, 5))])
    input_grads = net.get_input_grads()
    b_grad = input_grads[0].asnumpy()
    c_grad = input_grads[1].asnumpy()
    a_grad = input_grads[2].asnumpy()
    assert np.all(a_grad == 1), a_grad
    assert np.all(b_grad == 2), b_grad
    assert np.all(c_grad == 3), c_grad 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:25,代碼來源:test_module.py

示例5: test_module_layout

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_module_layout():
    sym = mx.sym.Variable('data')
    sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC')

    dshape = (3, 8, 7)
    mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)])
    mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, layout='TNC')])
    mod.init_params()
    mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)],
                                label=None))
    mod.backward([mx.nd.ones(dshape)])
    assert mod.get_outputs()[0].shape == dshape

    hdshape = (3, 4, 7)
    for x in mod.get_outputs(merge_multi_context=False)[0]:
        assert x.shape == hdshape 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_module.py

示例6: test_module_reshape

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_module_reshape():
    data = mx.sym.Variable('data')
    sym = mx.sym.FullyConnected(data, num_hidden=20, name='fc')

    dshape = (7, 20)
    mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)])
    mod.bind(data_shapes=[('data', dshape)])
    mod.init_params()
    mod.init_optimizer(optimizer_params={'learning_rate': 1})

    mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)],
                                label=None))
    mod.backward([mx.nd.ones(dshape)])
    mod.update()
    assert mod.get_outputs()[0].shape == dshape
    assert (mod.get_params()[0]['fc_bias'].asnumpy() == -1).all()

    dshape = (14, 20)
    mod.reshape(data_shapes=[('data', dshape)])
    mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)],
                                label=None))
    mod.backward([mx.nd.ones(dshape)])
    mod.update()
    assert mod.get_outputs()[0].shape == dshape
    assert (mod.get_params()[0]['fc_bias'].asnumpy() == -3).all() 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:test_module.py

示例7: test_forward_types

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_forward_types():
    #Test forward with other data batch API
    Batch = namedtuple('Batch', ['data'])
    data = mx.sym.Variable('data')
    out = data * 2
    mod = mx.mod.Module(symbol=out, label_names=None)
    mod.bind(data_shapes=[('data', (1, 10))])
    mod.init_params()
    data1 = [mx.nd.ones((1, 10))]
    mod.forward(Batch(data1))
    assert mod.get_outputs()[0].shape == (1, 10)
    data2 = [mx.nd.ones((3, 5))]
    mod.forward(Batch(data2))
    assert mod.get_outputs()[0].shape == (3, 5)

    #Test forward with other NDArray and np.ndarray inputs
    data = mx.sym.Variable('data')
    out = data * 2
    mod = mx.mod.Module(symbol=out, label_names=None)
    mod.bind(data_shapes=[('data', (1, 10))])
    mod.init_params()
    data1 = mx.nd.ones((1, 10))
    assert mod.predict(data1).shape == (1, 10)
    data2 = np.ones((1, 10))
    assert mod.predict(data1).shape == (1, 10) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:test_module.py

示例8: test_out_grads

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_out_grads():
    x = nd.ones((3, 5))
    dx = nd.zeros_like(x)
    mark_variables([x], [dx])
    da = None
    db = nd.array([1,2,3,4,5])
    dc = nd.array([5,4,3,2,1])

    with train_section():
        a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True)
        backward([a, b, c], [da, db, dc])

    assert (dx.asnumpy() == np.array(
        [[1,1,1,1,1],
         [1,2,3,4,5],
         [5,4,3,2,1]])).all() 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_contrib_autograd.py

示例9: unsorted_1d_segment_sum

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def unsorted_1d_segment_sum(input, seg_id, n_segs, dim):
    # TODO: support other dimensions
    assert dim == 0, 'MXNet only supports segment sum on first dimension'

    # Use SPMV to simulate segment sum
    ctx = input.context
    n_inputs = input.shape[0]
    input_shape_suffix = input.shape[1:]
    input = input.reshape(n_inputs, -1)
    n_range = nd.arange(n_inputs, dtype='int64').as_in_context(input.context)
    w_nnz = nd.ones(n_inputs).as_in_context(input.context)
    w_nid = nd.stack(seg_id, n_range, axis=0)
    w = nd.sparse.csr_matrix((w_nnz, (seg_id, n_range)), (n_segs, n_inputs))
    w = w.as_in_context(input.context)
    y = nd.dot(w, input)
    y = nd.reshape(y, (n_segs,) + input_shape_suffix)
    return y 
開發者ID:dmlc,項目名稱:dgl,代碼行數:19,代碼來源:tensor.py

示例10: test_binary_func

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_binary_func():
    def check_binary_func(x, y):
        f_add      = lambda x, y: x+y
        f_add_grad = lambda x, y: [nd.ones(x.shape), nd.ones(y.shape)]
        autograd_assert(x, y, func=f_add, grad_func=f_add_grad)
        f_mul      = lambda x, y: x*y
        f_mul_grad = lambda x, y: [y, x]
        autograd_assert(x, y, func=f_mul, grad_func=f_mul_grad)
        f_compose  = lambda x, y: x+x*y
        f_compose_grad = lambda x, y: [nd.ones(x.shape) + y, x]
        autograd_assert(x, y, func=f_compose, grad_func=f_compose_grad)
    uniform_x = nd.uniform(shape=(4, 5))
    uniform_y = nd.uniform(shape=(4, 5))
    stypes = ['default', 'row_sparse', 'csr']
    for stype_x in stypes:
        for stype_y in stypes:
            x = uniform_x.tostype(stype_x)
            y = uniform_y.tostype(stype_y)
            check_binary_func(x, y) 
開發者ID:mahyarnajibi,項目名稱:SNIPER-mxnet,代碼行數:21,代碼來源:test_autograd.py

示例11: _init_NDArrayIter_data

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def _init_NDArrayIter_data(data_type, is_image=False):
    if is_image:
        data = nd.random.uniform(0, 255, shape=(5000, 1, 28, 28))
        labels = nd.ones((5000, 1))
        return data, labels
    if data_type == 'NDArray':
        data = nd.ones((1000, 2, 2))
        labels = nd.ones((1000, 1))
    else:
        data = np.ones((1000, 2, 2))
        labels = np.ones((1000, 1))
    for i in range(1000):
        data[i] = i / 100
        labels[i] = i / 100
    return data, labels 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:17,代碼來源:test_io.py

示例12: test_DataBatch

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_DataBatch():
    from nose.tools import ok_
    from mxnet.io import DataBatch
    import re
    batch = DataBatch(data=[mx.nd.ones((2, 3))])
    ok_(re.match(
        'DataBatch: data shapes: \[\(2L?, 3L?\)\] label shapes: None', str(batch)))
    batch = DataBatch(data=[mx.nd.ones((2, 3)), mx.nd.ones(
        (7, 8))], label=[mx.nd.ones((4, 5))])
    ok_(re.match(
        'DataBatch: data shapes: \[\(2L?, 3L?\), \(7L?, 8L?\)\] label shapes: \[\(4L?, 5L?\)\]', str(batch))) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:13,代碼來源:test_io.py

示例13: test_CSVIter

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_CSVIter():
    def check_CSVIter_synthetic(dtype='float32'):
        cwd = os.getcwd()
        data_path = os.path.join(cwd, 'data.t')
        label_path = os.path.join(cwd, 'label.t')
        entry_str = '1'
        if dtype is 'int32':
            entry_str = '200000001'
        if dtype is 'int64':
            entry_str = '2147483648'
        with open(data_path, 'w') as fout:
            for i in range(1000):
                fout.write(','.join([entry_str for _ in range(8*8)]) + '\n')
        with open(label_path, 'w') as fout:
            for i in range(1000):
                fout.write('0\n')

        data_train = mx.io.CSVIter(data_csv=data_path, data_shape=(8, 8),
                                   label_csv=label_path, batch_size=100, dtype=dtype)
        expected = mx.nd.ones((100, 8, 8), dtype=dtype) * int(entry_str)
        for batch in iter(data_train):
            data_batch = data_train.getdata()
            assert_almost_equal(data_batch.asnumpy(), expected.asnumpy())
            assert data_batch.asnumpy().dtype == expected.asnumpy().dtype

    for dtype in ['int32', 'int64', 'float32']:
        check_CSVIter_synthetic(dtype=dtype) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:29,代碼來源:test_io.py

示例14: test_unary_func

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_unary_func():
    def check_unary_func(x):
        f_exp         = lambda x: nd.exp(x)
        f_exp_grad    = lambda x: [nd.exp(x)]
        autograd_assert(x, func=f_exp, grad_func=f_exp_grad)
        f_half        = lambda x: x/2
        f_half_grad   = lambda x: [nd.ones(x.shape) * 0.5]
        autograd_assert(x, func=f_half, grad_func=f_half_grad)
        f_square      = lambda x: x**2
        f_square_grad = lambda x: [2*x]
        autograd_assert(x, func=f_square, grad_func=f_square_grad)
    uniform = nd.uniform(shape=(4, 5))
    stypes = ['default', 'row_sparse', 'csr']
    for stype in stypes:
        check_unary_func(uniform.tostype(stype)) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:17,代碼來源:test_autograd.py

示例15: test_argnum

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import ones [as 別名]
def test_argnum():
    def f_with_mode(a, b, mode):
        if mode:
            return a+b
        else:
            return a*b

    a = nd.uniform(shape=(3, 2))
    b = nd.uniform(shape=(3, 2))
    f_add_grad = lambda x, y, mode: [nd.ones(x.shape), nd.ones(y.shape)]
    f_mul_grad = lambda x, y, mode: [y, x]
    autograd_assert(a, b, True,
        argnum=[0, 1], func=f_with_mode, grad_func=f_add_grad)
    autograd_assert(a, b, False,
        argnum=[0, 1], func=f_with_mode, grad_func=f_mul_grad) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:17,代碼來源:test_autograd.py


注:本文中的mxnet.ndarray.ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。