本文整理匯總了Python中mxnet.ndarray.max方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.max方法的具體用法?Python ndarray.max怎麽用?Python ndarray.max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet.ndarray
的用法示例。
在下文中一共展示了ndarray.max方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pad_packed_tensor
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import max [as 別名]
def pad_packed_tensor(input, lengths, value, l_min=None):
old_shape = input.shape
if isinstance(lengths, nd.NDArray):
max_len = as_scalar(input.max())
else:
max_len = builtins.max(lengths)
if l_min is not None:
max_len = builtins.max(max_len, l_min)
batch_size = len(lengths)
ctx = input.context
dtype = input.dtype
x = nd.full((batch_size * max_len, *old_shape[1:]), value, ctx=ctx, dtype=dtype)
index = []
for i, l in enumerate(lengths):
index.extend(range(i * max_len, i * max_len + l))
index = nd.array(index, ctx=ctx)
return scatter_row(x, index, input).reshape(batch_size, max_len, *old_shape[1:])
示例2: log_sum_exp
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import max [as 別名]
def log_sum_exp(vec):
max_score = nd.max(vec).asscalar()
return nd.log(nd.sum(nd.exp(vec - max_score))) + max_score
# Model
示例3: _viterbi_decode
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import max [as 別名]
def _viterbi_decode(self, feats):
backpointers = []
# Initialize the viterbi variables in log space
vvars = nd.full((1, self.tagset_size), -10000.)
vvars[0, self.tag2idx[START_TAG]] = 0
for feat in feats:
bptrs_t = [] # holds the backpointers for this step
viterbivars_t = [] # holds the viterbi variables for this step
for next_tag in range(self.tagset_size):
# next_tag_var[i] holds the viterbi variable for tag i at the
# previous step, plus the score of transitioning
# from tag i to next_tag.
# We don't include the emission scores here because the max
# does not depend on them (we add them in below)
next_tag_var = vvars + self.transitions.data()[next_tag]
best_tag_id = argmax(next_tag_var)
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0, best_tag_id])
# Now add in the emission scores, and assign vvars to the set
# of viterbi variables we just computed
vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1))
backpointers.append(bptrs_t)
# Transition to STOP_TAG
terminal_var = vvars + self.transitions.data()[self.tag2idx[STOP_TAG]]
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0, best_tag_id]
# Follow the back pointers to decode the best path.
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# Pop off the start tag (we dont want to return that to the caller)
start = best_path.pop()
assert start == self.tag2idx[START_TAG] # Sanity check
best_path.reverse()
return path_score, best_path
示例4: max
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import max [as 別名]
def max(input, dim):
return nd.max(input, axis=dim)
示例5: reduce_max
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import max [as 別名]
def reduce_max(input):
return input.max()
示例6: hybrid_forward
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import max [as 別名]
def hybrid_forward(self, F, preds, label):
label = label.astype('float32')
dist = F.sqrt(F.sum(F.square(preds), axis=1))
return label * F.square(dist) + (1 - label) * F.square(F.max(self._m - dist, 0))
示例7: log_sum_exp
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import max [as 別名]
def log_sum_exp(vec):
max_score = nd.max(vec).asscalar()
return nd.log(nd.sum(nd.exp(vec - max_score))) + max_score
示例8: _viterbi_decode
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import max [as 別名]
def _viterbi_decode(self, feats):
backpointers = []
# Initialize the viterbi variables in log space
vvars = nd.full((1, self.tagset_size), -10000.)
vvars[0, self.tag2idx[START_TAG]] = 0
for feat in feats:
bptrs_t = [] # holds the backpointers for this step
viterbivars_t = [] # holds the viterbi variables for this step
for next_tag in range(self.tagset_size):
# next_tag_var[i] holds the viterbi variable for tag i at the
# previous step, plus the score of transitioning
# from tag i to next_tag.
# We don't include the emission scores here because the max
# does not depend on them (we add them in below)
next_tag_var = vvars + self.transitions[next_tag]
best_tag_id = argmax(next_tag_var)
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0, best_tag_id])
# Now add in the emission scores, and assign vvars to the set
# of viterbi variables we just computed
vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1))
backpointers.append(bptrs_t)
# Transition to STOP_TAG
terminal_var = vvars + self.transitions[self.tag2idx[STOP_TAG]]
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0, best_tag_id]
# Follow the back pointers to decode the best path.
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# Pop off the start tag (we dont want to return that to the caller)
start = best_path.pop()
assert start == self.tag2idx[START_TAG] # Sanity check
best_path.reverse()
return path_score, best_path