本文整理匯總了Python中mxnet.ndarray.empty方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.empty方法的具體用法?Python ndarray.empty怎麽用?Python ndarray.empty使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet.ndarray
的用法示例。
在下文中一共展示了ndarray.empty方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_executor
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def get_executor(sym, ctx, data_inputs, initializer=None):
data_shapes = {k: v.shape for k, v in data_inputs.items()}
arg_names = sym.list_arguments()
aux_names = sym.list_auxiliary_states()
param_names = list(set(arg_names) - set(data_inputs.keys()))
arg_shapes, output_shapes, aux_shapes = sym.infer_shape(**data_shapes)
arg_name_shape = {k: s for k, s in zip(arg_names, arg_shapes)}
params = {n: nd.empty(arg_name_shape[n], ctx=ctx) for n in param_names}
params_grad = {n: nd.empty(arg_name_shape[n], ctx=ctx) for n in param_names}
aux_states = {k: nd.empty(s, ctx=ctx) for k, s in zip(aux_names, aux_shapes)}
exe = sym.bind(ctx=ctx, args=dict(params, **data_inputs),
args_grad=params_grad,
aux_states=aux_states)
if initializer is not None:
for k, v in params.items():
initializer(k, v)
return exe, params, params_grad, aux_states
示例2: synthetic_grad
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def synthetic_grad(X, theta, sigma1, sigma2, sigmax, rescale_grad=1.0, grad=None):
if grad is None:
grad = nd.empty(theta.shape, theta.context)
theta1 = theta.asnumpy()[0]
theta2 = theta.asnumpy()[1]
v1 = sigma1 ** 2
v2 = sigma2 ** 2
vx = sigmax ** 2
denominator = numpy.exp(-(X - theta1) ** 2 / (2 * vx)) + numpy.exp(
-(X - theta1 - theta2) ** 2 / (2 * vx))
grad_npy = numpy.zeros(theta.shape)
grad_npy[0] = -rescale_grad * ((numpy.exp(-(X - theta1) ** 2 / (2 * vx)) * (X - theta1) / vx
+ numpy.exp(-(X - theta1 - theta2) ** 2 / (2 * vx)) * (
X - theta1 - theta2) / vx) / denominator).sum() \
+ theta1 / v1
grad_npy[1] = -rescale_grad * ((numpy.exp(-(X - theta1 - theta2) ** 2 / (2 * vx)) * (
X - theta1 - theta2) / vx) / denominator).sum() \
+ theta2 / v2
grad[:] = grad_npy
return grad
示例3: load_bin
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def load_bin(path, image_size):
try:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f) #py2
except UnicodeDecodeError as e:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f, encoding='bytes') #py3
data_list = []
for flip in [0,1]:
data = nd.empty((len(issame_list)*2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in range(len(issame_list)*2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
if img.shape[1]!=image_size[0]:
img = mx.image.resize_short(img, image_size[0])
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i%1000==0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例4: load_dataset
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def load_dataset(lfw_dir, image_size):
lfw_pairs = read_pairs(os.path.join(lfw_dir, 'pairs.txt'))
lfw_paths, issame_list = get_paths(lfw_dir, lfw_pairs, 'jpg')
lfw_data_list = []
for flip in [0,1]:
lfw_data = nd.empty((len(lfw_paths), 3, image_size[0], image_size[1]))
lfw_data_list.append(lfw_data)
i = 0
for path in lfw_paths:
with open(path, 'rb') as fin:
_bin = fin.read()
img = mx.image.imdecode(_bin)
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
lfw_data_list[flip][i][:] = img
i+=1
if i%1000==0:
print('loading lfw', i)
print(lfw_data_list[0].shape)
print(lfw_data_list[1].shape)
return (lfw_data_list, issame_list)
示例5: load_bin
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def load_bin(path, image_size):
bins, issame_list = pickle.load(open(path, 'rb'))
data_list = []
for flip in [0,1]:
data = nd.empty((len(issame_list)*2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in xrange(len(issame_list)*2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
if img.shape[1]!=image_size[0]:
img = mx.image.resize_short(img, image_size[0])
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i%1000==0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例6: load_dataset_bin
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def load_dataset_bin(self):
name = 'lfw'
path = os.path.join(self.lfw_dir, name+".bin")
bins, issame_list = pickle.load(open(path, 'rb'))
data_list = []
for flip in [0,1]:
data = nd.empty((len(issame_list)*2, 3, self.image_size[0], self.image_size[1]))
data_list.append(data)
for i in xrange(len(issame_list)*2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i%1000==0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例7: load_bin
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def load_bin(path, image_size):
try:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f) # py2
except UnicodeDecodeError as e:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f, encoding='bytes') # py3
data_list = []
for flip in [0, 1]:
data = nd.empty((len(issame_list) * 2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in range(len(issame_list) * 2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
if img.shape[1] != image_size[0]:
img = mx.image.resize_short(img, image_size[0])
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0, 1]:
if flip == 1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i % 1000 == 0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例8: load_bin
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def load_bin(path, image_size):
bins, issame_list = pickle.load(open(path, 'rb'), encoding='bytes')
data_list = []
for flip in [0,1]:
data = nd.empty((len(issame_list)*2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in range(len(issame_list)*2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i%1000==0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例9: copy_param
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def copy_param(exe, new_param=None):
if new_param is None:
new_param = {k: nd.empty(v.shape, ctx=mx.cpu()) for k,v in exe.arg_dict.items()}
for k, v in new_param.items():
exe.arg_dict[k].copyto(v)
return new_param
示例10: run_synthetic_SGLD
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def run_synthetic_SGLD():
theta1 = 0
theta2 = 1
sigma1 = numpy.sqrt(10)
sigma2 = 1
sigmax = numpy.sqrt(2)
X = load_synthetic(theta1=theta1, theta2=theta2, sigmax=sigmax, num=100)
minibatch_size = 1
total_iter_num = 1000000
lr_scheduler = SGLDScheduler(begin_rate=0.01, end_rate=0.0001, total_iter_num=total_iter_num,
factor=0.55)
optimizer = mx.optimizer.create('sgld',
learning_rate=None,
rescale_grad=1.0,
lr_scheduler=lr_scheduler,
wd=0)
updater = mx.optimizer.get_updater(optimizer)
theta = mx.random.normal(0, 1, (2,), mx.cpu())
grad = nd.empty((2,), mx.cpu())
samples = numpy.zeros((2, total_iter_num))
start = time.time()
for i in xrange(total_iter_num):
if (i + 1) % 100000 == 0:
end = time.time()
print("Iter:%d, Time spent: %f" % (i + 1, end - start))
start = time.time()
ind = numpy.random.randint(0, X.shape[0])
synthetic_grad(X[ind], theta, sigma1, sigma2, sigmax, rescale_grad=
X.shape[0] / float(minibatch_size), grad=grad)
updater('theta', grad, theta)
samples[:, i] = theta.asnumpy()
plt.hist2d(samples[0, :], samples[1, :], (200, 200), cmap=plt.cm.jet)
plt.colorbar()
plt.show()
示例11: __init__
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def __init__(self, data_shapes, sym_gen, params=None, aux_states=None,
default_bucket_kwargs=None, learn_init_keys=None,
initializer=mx.init.Xavier(factor_type="in", rnd_type="gaussian", magnitude=2),
ctx=mx.gpu(), name='Net'):
self.sym_gen = sym_gen
bucket_kwargs = default_bucket_kwargs.copy() if \
default_bucket_kwargs is not None else dict()
self.curr_bucket_key = None
self.ctx = ctx
self.name = name
self.initializer = initializer
if params is None:
self.params = None
self.params_grad = None
else:
self.params = OrderedDict([(k, v.copyto(ctx)) for k, v in params.items()])
self.params_grad = OrderedDict([(n, nd.empty(v.shape, ctx=ctx))
for n, v in self.params.items()])
if aux_states is not None:
self.aux_states = OrderedDict([(k, v.copyto(ctx)) for k, v in aux_states.items()])
else:
self.aux_states = None
self._buckets = dict()
self.learn_init_keys = learn_init_keys if learn_init_keys is not None else []
self.learn_init_key_shapes = {k: data_shapes[k] for k in self.learn_init_keys}
self.switch_bucket(bucket_kwargs=bucket_kwargs, data_shapes=data_shapes)
self.acc_grad = None
示例12: next
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def next(self):
"""Returns the next batch of data."""
#print('next')
batch_size = self.batch_size
batch_data = nd.empty((batch_size,)+self.data_shape)
batch_label = nd.empty((batch_size,)+self.label_shape)
i = 0
#self.cutoff = random.randint(800,1280)
try:
while i < batch_size:
#print('N', i)
data, label = self.next_sample()
data = nd.array(data)
data = nd.transpose(data, axes=(2, 0, 1))
label = nd.array(label)
label = nd.transpose(label, axes=(2, 0, 1))
batch_data[i][:] = data
batch_label[i][:] = label
i += 1
except StopIteration:
if i<batch_size:
raise StopIteration
#return {self.data_name : batch_data,
# self.label_name : batch_label}
#print(batch_data.shape, batch_label.shape)
return mx.io.DataBatch([batch_data], [batch_label, self.weight_mask], batch_size - i)
示例13: gather_row
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def gather_row(data, row_index):
# MXNet workaround for empty row index
if len(row_index) == 0:
if data.shape[0] == 0:
return data
else:
return data[0:0]
if isinstance(row_index, nd.NDArray):
return nd.take(data, row_index)
else:
return data[row_index,]
示例14: backward
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def backward(self, grad_out):
lhs_data_nd, rhs_data_nd, out_data_nd, feat_shape, degs = self.saved_tensors
if self.reducer == 'mean':
grad_out = grad_out / degs
grad_out_nd = zerocopy_to_dgl_ndarray(grad_out)
grad_lhs = nd.empty((lhs_data_nd.shape[0],) + feat_shape,
ctx=grad_out.context, dtype=grad_out.dtype)
K.backward_lhs_binary_op_reduce(
self.reducer if self.reducer != 'mean' else 'sum',
self.binary_op, self.graph, self.lhs, self.rhs,
lhs_data_nd, rhs_data_nd, out_data_nd, grad_out_nd,
zerocopy_to_dgl_ndarray_for_write(grad_lhs), self.lhs_map[1],
self.rhs_map[1], self.out_map[1])
grad_lhs = _reduce_grad(grad_lhs, lhs_data_nd.shape)
grad_rhs = nd.empty((rhs_data_nd.shape[0],) + feat_shape,
ctx=grad_out.context, dtype=grad_out.dtype)
K.backward_rhs_binary_op_reduce(
self.reducer if self.reducer != 'mean' else 'sum',
self.binary_op, self.graph, self.lhs, self.rhs,
lhs_data_nd, rhs_data_nd, out_data_nd, grad_out_nd,
zerocopy_to_dgl_ndarray_for_write(grad_rhs), self.lhs_map[1],
self.rhs_map[1], self.out_map[1])
grad_rhs = _reduce_grad(grad_rhs, rhs_data_nd.shape)
# clear saved tensors explicitly
self.saved_tensors = None
return grad_lhs, grad_rhs
示例15: forward
# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import empty [as 別名]
def forward(self, in_data):
feat_shape = in_data.shape[1:]
out_data = nd.empty((self.out_size,) + feat_shape,
ctx=in_data.context, dtype=in_data.dtype)
in_data_nd = zerocopy_to_dgl_ndarray(in_data)
out_data_nd = zerocopy_to_dgl_ndarray_for_write(out_data)
K.copy_reduce(
self.reducer if self.reducer != 'mean' else 'sum',
self.graph, self.target, in_data_nd, out_data_nd,
self.in_map[0], self.out_map[0])
# normalize if mean reducer
# NOTE(zihao): this is a temporary hack and we should have better solution in the future.
if self.reducer == 'mean':
in_ones = nd.ones((in_data.shape[0],),
ctx=in_data.context, dtype=in_data.dtype)
degs = nd.empty((out_data.shape[0],),
ctx=out_data.context, dtype=out_data.dtype)
in_ones_nd = zerocopy_to_dgl_ndarray(in_ones)
degs_nd = zerocopy_to_dgl_ndarray(degs)
K.copy_reduce(
'sum', self.graph, self.target, in_ones_nd, degs_nd,
self.in_map[0], self.out_map[0])
# reshape
degs = degs.reshape((out_data.shape[0],) + (1,) * (out_data.ndim - 1)).clip(1, float('inf'))
out_data = out_data / degs
else:
degs = None
self.save_for_backward(in_data_nd, out_data_nd, degs)
return out_data