當前位置: 首頁>>代碼示例>>Python>>正文


Python ndarray.concat方法代碼示例

本文整理匯總了Python中mxnet.ndarray.concat方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.concat方法的具體用法?Python ndarray.concat怎麽用?Python ndarray.concat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.concat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: query

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def query(self, images):
        if self.pool_size == 0:
            return images
        return_images = []
        for image in images:
            image = image.reshape(1,image.shape[0],image.shape[1],image.shape[2])
            if self.num_imgs < self.pool_size:
                self.num_imgs = self.num_imgs + 1
                self.images.append(image)
                return_images.append(image)
            else:
                p = random.uniform(0, 1)
                if p > 0.5:
                    random_id = random.randint(0, self.pool_size - 1)  # randint is inclusive
                    tmp = self.images[random_id].copy()
                    self.images[random_id] = image
                    return_images.append(tmp)
                else:
                    return_images.append(image)
        image_array = return_images[0].copyto(images.context)
        for image in return_images[1:]:
            image_array = nd.concat(image_array,image.copyto(images.context),dim=0)
        return image_array 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:25,代碼來源:train_cgan.py

示例2: _retina_solve

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def _retina_solve(self):
        out, res, anchors = iter(self.exec_group.execs[0].outputs), [], []

        for fpn in self._fpn_anchors:
            scores = next(out)[:, -fpn.scales_shape:,
                               :, :].transpose((0, 2, 3, 1))
            deltas = next(out).transpose((0, 2, 3, 1))

            res.append(concat(deltas.reshape((-1, 4)),
                              scores.reshape((-1, 1)), dim=1))

            anchors.append(self._get_runtime_anchors(*deltas.shape[1:3],
                                                     fpn.stride,
                                                     fpn.base_anchors))

        return concat(*res, dim=0), concatenate(anchors) 
開發者ID:1996scarlet,項目名稱:faster-mobile-retinaface,代碼行數:18,代碼來源:face_detector.py

示例3: _forward_alg

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def _forward_alg(self, feats):
        alphas = [[-10000.] * self.tagset_size]
        alphas[0][self.tag2idx[self.START_TAG]] = 0.
        alphas = nd.array(alphas,ctx=self.ctx)

        for feat in feats:
            alphas_t = [] 
            for next_tag in range(self.tagset_size):
                emit_score = feat[next_tag].reshape((1, -1))
                trans_score = self.transitions[next_tag].reshape((1, -1))
                next_tag_var = alphas + trans_score + emit_score
                alphas_t.append(log_sum_exp(next_tag_var))
            alphas = nd.concat(*alphas_t, dim=0).reshape((1, -1))
        terminal_var = alphas + self.transitions[self.tag2idx[self.STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha 
開發者ID:fierceX,項目名稱:NER_BiLSTM_CRF_Chinese,代碼行數:18,代碼來源:model.py

示例4: tensor_save_bgrimage

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def tensor_save_bgrimage(tensor, filename, cuda=False):
    (b, g, r) = F.split(tensor, num_outputs=3, axis=0)
    tensor = F.concat(r, g, b, dim=0)
    tensor_save_rgbimage(tensor, filename, cuda) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:6,代碼來源:utils.py

示例5: subtract_imagenet_mean_batch

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def subtract_imagenet_mean_batch(batch):
    """Subtract ImageNet mean pixel-wise from a BGR image."""
    batch = F.swapaxes(batch,0, 1)
    (r, g, b) = F.split(batch, num_outputs=3, axis=0)
    r = r - 123.680
    g = g - 116.779
    b = b - 103.939
    batch = F.concat(r, g, b, dim=0)
    batch = F.swapaxes(batch,0, 1)
    return batch 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:12,代碼來源:utils.py

示例6: subtract_imagenet_mean_preprocess_batch

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def subtract_imagenet_mean_preprocess_batch(batch):
    """Subtract ImageNet mean pixel-wise from a BGR image."""
    batch = F.swapaxes(batch,0, 1)
    (r, g, b) = F.split(batch, num_outputs=3, axis=0)
    r = r - 123.680
    g = g - 116.779
    b = b - 103.939
    batch = F.concat(b, g, r, dim=0)
    batch = F.swapaxes(batch,0, 1)
    return batch 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:12,代碼來源:utils.py

示例7: add_imagenet_mean_batch

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def add_imagenet_mean_batch(batch):
    batch = F.swapaxes(batch,0, 1)
    (b, g, r) = F.split(batch, num_outputs=3, axis=0)
    r = r + 123.680
    g = g + 116.779
    b = b + 103.939
    batch = F.concat(b, g, r, dim=0)
    batch = F.swapaxes(batch,0, 1)
    """
    batch = denormalizer(batch)
    """
    return batch 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:14,代碼來源:utils.py

示例8: preprocess_batch

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def preprocess_batch(batch):
    batch = F.swapaxes(batch, 0, 1)
    (r, g, b) = F.split(batch, num_outputs=3, axis=0)
    batch = F.concat(b, g, r, dim=0)
    batch = F.swapaxes(batch, 0, 1)
    return batch 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:8,代碼來源:utils.py

示例9: _score_sentence

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = nd.array([0])
        tags = nd.concat(nd.array([self.tag2idx[START_TAG]]), *tags, dim=0)
        for i, feat in enumerate(feats):
            score = score + \
                self.transitions.data()[to_scalar(tags[i+1]), to_scalar(tags[i])] + feat[to_scalar(tags[i+1])]
        score = score + self.transitions.data()[self.tag2idx[STOP_TAG],
                                         to_scalar(tags[int(tags.shape[0]-1)])]
        return score 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:12,代碼來源:lstm_crf.py

示例10: _viterbi_decode

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        vvars = nd.full((1, self.tagset_size), -10000.)
        vvars[0, self.tag2idx[START_TAG]] = 0

        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = vvars + self.transitions.data()[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0, best_tag_id])
            # Now add in the emission scores, and assign vvars to the set
            # of viterbi variables we just computed
            vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1))
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = vvars + self.transitions.data()[self.tag2idx[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0, best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag2idx[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:43,代碼來源:lstm_crf.py

示例11: k_fold_cross_valid

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def k_fold_cross_valid(k, epochs, verbose_epoch, X_train, y_train,
                       learning_rate, weight_decay, batch_size):
    """Conducts k-fold cross validation for the model."""
    assert k > 1
    fold_size = X_train.shape[0] // k

    train_loss_sum = 0.0
    test_loss_sum = 0.0
    for test_idx in range(k):
        X_val_test = X_train[test_idx * fold_size: (test_idx + 1) *
                                                   fold_size, :]
        y_val_test = y_train[test_idx * fold_size: (test_idx + 1) * fold_size]
        val_train_defined = False
        for i in range(k):
            if i != test_idx:
                X_cur_fold = X_train[i * fold_size: (i + 1) * fold_size, :]
                y_cur_fold = y_train[i * fold_size: (i + 1) * fold_size]
                if not val_train_defined:
                    X_val_train = X_cur_fold
                    y_val_train = y_cur_fold
                    val_train_defined = True
                else:
                    X_val_train = nd.concat(X_val_train, X_cur_fold, dim=0)
                    y_val_train = nd.concat(y_val_train, y_cur_fold, dim=0)
        net = get_net()
        train_loss = train(net, X_val_train, y_val_train, epochs, verbose_epoch,
                           learning_rate, weight_decay, batch_size)
        train_loss_sum += train_loss
        test_loss = get_rmse_log(net, X_val_test, y_val_test)
        print("Test loss: %f" % test_loss)
        test_loss_sum += test_loss
    return train_loss_sum / k, test_loss_sum / k

# The sets of parameters. Better results are obtained with modifications.
# These parameters can be fine-tuned with k-fold cross-validation. 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:37,代碼來源:kaggle_k_fold_cross_validation.py

示例12: learn

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def learn(epochs, verbose_epoch, X_train, y_train, test, learning_rate,
          weight_decay, batch_size):
    """Trains the model and predicts on the test data set."""
    net = get_net()
    _ = train(net, X_train, y_train, epochs, verbose_epoch, learning_rate,
                 weight_decay, batch_size)
    preds = net(X_test).asnumpy()
    test['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test['Id'], test['SalePrice']], axis=1)
    submission.to_csv('submission.csv', index=False) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:12,代碼來源:kaggle_k_fold_cross_validation.py

示例13: forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def forward(self, graph, ufeat, ifeat):
        """Forward function.

        Parameters
        ----------
        graph : DGLHeteroGraph
            "Flattened" user-movie graph with only one edge type.
        ufeat : mx.nd.NDArray
            User embeddings. Shape: (|V_u|, D)
        ifeat : mx.nd.NDArray
            Movie embeddings. Shape: (|V_m|, D)

        Returns
        -------
        mx.nd.NDArray
            Predicting scores for each user-movie edge.
        """
        graph = graph.local_var()
        ufeat = self.dropout(ufeat)
        ifeat = self.dropout(ifeat)
        graph.nodes['movie'].data['h'] = ifeat
        basis_out = []
        for i in range(self._num_basis_functions):
            graph.nodes['user'].data['h'] = F.dot(ufeat, self.Ps[i].data())
            graph.apply_edges(fn.u_dot_v('h', 'h', 'sr'))
            basis_out.append(graph.edata['sr'].expand_dims(1))
        out = F.concat(*basis_out, dim=1)
        out = self.rate_out(out)
        return out 
開發者ID:dmlc,項目名稱:dgl,代碼行數:31,代碼來源:model.py

示例14: cat

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def cat(seq, dim):
    return nd.concat(*seq, dim=dim) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:tensor.py

示例15: create_neg

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import concat [as 別名]
def create_neg(self, neg_head):
        if neg_head:
            def fn(heads, relations, tails, num_chunks, chunk_size, neg_sample_size):
                hidden_dim = heads.shape[1]
                emb_real, emb_img = nd.split(tails, num_outputs=2, axis=-1)
                rel_real, rel_img = nd.split(relations, num_outputs=2, axis=-1)
                real = emb_real * rel_real + emb_img * rel_img
                img = -emb_real * rel_img + emb_img * rel_real
                emb_complex = nd.concat(real, img, dim=-1)
                tmp = emb_complex.reshape(num_chunks, chunk_size, hidden_dim)
                heads = heads.reshape(num_chunks, neg_sample_size, hidden_dim)
                heads = nd.transpose(heads, axes=(0, 2, 1))
                return nd.linalg_gemm2(tmp, heads)
            return fn
        else:
            def fn(heads, relations, tails, num_chunks, chunk_size, neg_sample_size):
                hidden_dim = heads.shape[1]
                emb_real, emb_img = nd.split(heads, num_outputs=2, axis=-1)
                rel_real, rel_img = nd.split(relations, num_outputs=2, axis=-1)
                real = emb_real * rel_real - emb_img * rel_img
                img = emb_real * rel_img + emb_img * rel_real
                emb_complex = nd.concat(real, img, dim=-1)
                tmp = emb_complex.reshape(num_chunks, chunk_size, hidden_dim)

                tails = tails.reshape(num_chunks, neg_sample_size, hidden_dim)
                tails = nd.transpose(tails, axes=(0, 2, 1))
                return nd.linalg_gemm2(tmp, tails)
            return fn 
開發者ID:dmlc,項目名稱:dgl,代碼行數:30,代碼來源:score_fun.py


注:本文中的mxnet.ndarray.concat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。