當前位置: 首頁>>代碼示例>>Python>>正文


Python ndarray.clip方法代碼示例

本文整理匯總了Python中mxnet.ndarray.clip方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.clip方法的具體用法?Python ndarray.clip怎麽用?Python ndarray.clip使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.clip方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tensor_save_rgbimage

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import clip [as 別名]
def tensor_save_rgbimage(img, filename, cuda=False):
    img = F.clip(img, 0, 255).asnumpy()
    img = img.transpose(1, 2, 0).astype('uint8')
    img = Image.fromarray(img)
    img.save(filename) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:7,代碼來源:utils.py

示例2: imagenet_clamp_batch

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import clip [as 別名]
def imagenet_clamp_batch(batch, low, high):
    """ Not necessary in practice """
    F.clip(batch[:,0,:,:],low-123.680, high-123.680)
    F.clip(batch[:,1,:,:],low-116.779, high-116.779)
    F.clip(batch[:,2,:,:],low-103.939, high-103.939) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:7,代碼來源:utils.py

示例3: get_rmse_log

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import clip [as 別名]
def get_rmse_log(net, X_train, y_train):
    """Gets root mse between the logarithms of the prediction and the truth."""
    num_train = X_train.shape[0]
    clipped_preds = nd.clip(net(X_train), 1, float('inf'))
    return np.sqrt(2 * nd.sum(square_loss(
        nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:8,代碼來源:kaggle_k_fold_cross_validation.py

示例4: unsorted_1d_segment_mean

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import clip [as 別名]
def unsorted_1d_segment_mean(input, seg_id, n_segs, dim):
    # TODO: support other dimensions
    assert dim == 0, 'MXNet only supports segment mean on first dimension'

    n_ones = nd.ones_like(seg_id).astype(input.dtype)
    w = unsorted_1d_segment_sum(n_ones, seg_id, n_segs, 0)
    w = nd.clip(w, a_min=1, a_max=np.inf)
    y = unsorted_1d_segment_sum(input, seg_id, n_segs, dim)
    y = y / w.reshape((-1,) + (1,) * (y.ndim - 1))
    return y 
開發者ID:dmlc,項目名稱:dgl,代碼行數:12,代碼來源:tensor.py

示例5: forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import clip [as 別名]
def forward(self, in_data):
        feat_shape = in_data.shape[1:]
        out_data = nd.empty((self.out_size,) + feat_shape,
                            ctx=in_data.context, dtype=in_data.dtype)
        in_data_nd = zerocopy_to_dgl_ndarray(in_data)
        out_data_nd = zerocopy_to_dgl_ndarray_for_write(out_data)
        K.copy_reduce(
            self.reducer if self.reducer != 'mean' else 'sum',
            self.graph, self.target, in_data_nd, out_data_nd,
            self.in_map[0], self.out_map[0])
        # normalize if mean reducer
        # NOTE(zihao): this is a temporary hack and we should have better solution in the future.
        if self.reducer == 'mean':
            in_ones = nd.ones((in_data.shape[0],),
                              ctx=in_data.context, dtype=in_data.dtype)
            degs = nd.empty((out_data.shape[0],),
                            ctx=out_data.context, dtype=out_data.dtype)
            in_ones_nd = zerocopy_to_dgl_ndarray(in_ones)
            degs_nd = zerocopy_to_dgl_ndarray(degs)
            K.copy_reduce(
                'sum', self.graph, self.target, in_ones_nd, degs_nd, 
                self.in_map[0], self.out_map[0])
            # reshape
            degs = degs.reshape((out_data.shape[0],) + (1,) * (out_data.ndim - 1)).clip(1, float('inf')) 
            out_data = out_data / degs
        else:
            degs = None
        self.save_for_backward(in_data_nd, out_data_nd, degs)
        return out_data 
開發者ID:dmlc,項目名稱:dgl,代碼行數:31,代碼來源:tensor.py

示例6: plot_img

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import clip [as 別名]
def plot_img(losses_log):
    sw.add_image(tag='lr_img', image=nd.clip(nd.concatenate(losses_log['lr_img'])[0:4], 0, 1))
    sw.add_image(tag='hr_img', image=nd.clip(nd.concatenate(losses_log['hr_img'])[0:4], 0, 1))
    sw.add_image(tag='hr_img_fake', image=nd.clip(nd.concatenate(losses_log['hr_img_fake'])[0:4], 0, 1)) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:6,代碼來源:train_srgan.py

示例7: plot_img

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import clip [as 別名]
def plot_img(losses_log):
    sw.add_image(tag='A', image=nd.clip(nd.concatenate([losses_log['real_A'][0][0:1],
                                                        losses_log['fake_B'][0][0:1],
                                                        losses_log['rec_A'][0][0:1],
                                                        losses_log['idt_A'][0][0:1]]) * 0.5 + 0.5, 0, 1))
    sw.add_image(tag='B', image=nd.clip(nd.concatenate([losses_log['real_B'][0][0:1],
                                                        losses_log['fake_A'][0][0:1],
                                                        losses_log['rec_B'][0][0:1],
                                                        losses_log['idt_B'][0][0:1]]) * 0.5 + 0.5, 0, 1)) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:11,代碼來源:train_cgan.py

示例8: hybrid_forward

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import clip [as 別名]
def hybrid_forward(self, F, x, weight):
        x_norm = F.L2Normalization(x, mode='instance', name='x_n')
        w_norm = F.L2Normalization(weight, mode='instance', name='w_n')
        cos_theta = F.FullyConnected(x_norm, w_norm, no_bias=True, num_hidden=self._units, name='cos_theta')
        cos_theta = F.clip(cos_theta, a_min=-1, a_max=1)
        return cos_theta 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:8,代碼來源:custom_layers.py


注:本文中的mxnet.ndarray.clip方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。