當前位置: 首頁>>代碼示例>>Python>>正文


Python ndarray.argmax方法代碼示例

本文整理匯總了Python中mxnet.ndarray.argmax方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.argmax方法的具體用法?Python ndarray.argmax怎麽用?Python ndarray.argmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.argmax方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: update

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def update(self, labels, preds):
        """Updates the internal evaluation result.
        Parameters
        ----------
        labels : list of `NDArray`
            The labels of the data with class indices as values, one per sample.
        preds : list of `NDArray`
            Prediction values for samples. Each prediction value can either be the class index,
            or a vector of likelihoods for all classes.
        """
        labels, preds = check_label_shapes(labels, preds, True)

        for label, pred_label in zip(labels, preds):
            if pred_label.shape != label.shape:
                pred_label = ndarray.argmax(pred_label, axis=self.axis)
            pred_label = pred_label.asnumpy().astype('int32')
            label = label.asnumpy().astype('int32')

            labels, preds = check_label_shapes(label, pred_label)

            valid = (labels.reshape(-1, 1) != self.ignore_labels).all(axis=-1)

            self.sum_metric += np.logical_and(pred_label.flat == label.flat, valid).sum()
            self.num_inst += np.sum(valid) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:26,代碼來源:accuracy.py

示例2: test_model_save_load

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def test_model_save_load(gluon_model, model_data, model_path):
    _, _, test_data = model_data
    expected = nd.argmax(gluon_model(test_data), axis=1)

    mlflow.gluon.save_model(gluon_model, model_path)
    # Loading Gluon model
    model_loaded = mlflow.gluon.load_model(model_path, ctx.cpu())
    actual = nd.argmax(model_loaded(test_data), axis=1)
    assert all(expected == actual)
    # Loading pyfunc model
    pyfunc_loaded = mlflow.pyfunc.load_model(model_path)
    test_pyfunc_data = pd.DataFrame(test_data.asnumpy())
    pyfunc_preds = pyfunc_loaded.predict(test_pyfunc_data)
    assert all(
        np.argmax(pyfunc_preds.values, axis=1)
        == expected.asnumpy()) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:18,代碼來源:test_gluon_model_export.py

示例3: test_model_log_load

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def test_model_log_load(gluon_model, model_data, model_path):
    _, _, test_data = model_data
    expected = nd.argmax(gluon_model(test_data), axis=1)

    artifact_path = "model"
    with mlflow.start_run():
        mlflow.gluon.log_model(gluon_model, artifact_path=artifact_path)
        model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id, artifact_path=artifact_path)

    # Loading Gluon model
    model_loaded = mlflow.gluon.load_model(model_uri, ctx.cpu())
    actual = nd.argmax(model_loaded(test_data), axis=1)
    assert all(expected == actual)
    # Loading pyfunc model
    pyfunc_loaded = mlflow.pyfunc.load_model(model_uri)
    test_pyfunc_data = pd.DataFrame(test_data.asnumpy())
    pyfunc_preds = pyfunc_loaded.predict(test_pyfunc_data)
    assert all(
        np.argmax(pyfunc_preds.values, axis=1)
        == expected.asnumpy()) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:23,代碼來源:test_gluon_model_export.py

示例4: test_gluon_model_serving_and_scoring_as_pyfunc

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def test_gluon_model_serving_and_scoring_as_pyfunc(gluon_model, model_data):
    _, _, test_data = model_data
    expected = nd.argmax(gluon_model(test_data), axis=1)

    artifact_path = "model"
    with mlflow.start_run():
        mlflow.gluon.log_model(gluon_model, artifact_path=artifact_path)
        model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id, artifact_path=artifact_path)

    scoring_response = pyfunc_serve_and_score_model(
        model_uri=model_uri,
        data=pd.DataFrame(test_data.asnumpy()),
        content_type=pyfunc_scoring_server.CONTENT_TYPE_JSON_SPLIT_ORIENTED)
    response_values = \
        pd.read_json(scoring_response.content, orient="records").values.astype(np.float32)
    assert all(
        np.argmax(response_values, axis=1)
        == expected.asnumpy()) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:21,代碼來源:test_gluon_model_export.py

示例5: batch_intersection_union

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def batch_intersection_union(output, target, nclass):
    """mIoU"""
    # inputs are NDarray, output 4D, target 3D
    predict = F.argmax(output, 1)
    target = target.astype(predict.dtype)
    mini = 1
    maxi = nclass
    nbins = nclass
    predict = predict.asnumpy() + 1
    target = target.asnumpy() + 1

    predict = predict * (target > 0).astype(predict.dtype)
    #intersection = predict * (F.equal(predict, target)).astype(predict.dtype)
    intersection = predict * (predict == target)
    # areas of intersection and union
    area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi))
    area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi))
    area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi))
    area_union = area_pred + area_lab - area_inter
    return area_inter, area_union 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:22,代碼來源:voc_segmentation.py

示例6: argmax

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def argmax(vec):
    # return the argmax as a python int
    idx = nd.argmax(vec, axis=1)
    return to_scalar(idx) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:6,代碼來源:lstm_crf.py

示例7: _viterbi_decode

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        vvars = nd.full((1, self.tagset_size), -10000.)
        vvars[0, self.tag2idx[START_TAG]] = 0

        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = vvars + self.transitions.data()[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0, best_tag_id])
            # Now add in the emission scores, and assign vvars to the set
            # of viterbi variables we just computed
            vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1))
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = vvars + self.transitions.data()[self.tag2idx[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0, best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag2idx[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:43,代碼來源:lstm_crf.py

示例8: _evaluate_accuracy

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def _evaluate_accuracy(self, data_iterator, net, layer_params):
        numerator = 0.
        denominator = 0.
        for i, (data, label) in enumerate(data_iterator):
            data = data.as_in_context(self._context_bnn).reshape((-1, data.shape[1]))
            label = label.as_in_context(self._context_bnn)
            replace_params_net(layer_params, net, self._context_bnn)
            output = net(data)
            predictions = nd.argmax(output, axis=1)
            numerator += nd.sum(predictions == label)
            denominator += data.shape[0]
        return (numerator / denominator).asscalar() 
開發者ID:amzn,項目名稱:xfer,代碼行數:14,代碼來源:bnn_repurposer.py

示例9: batch_pix_accuracy

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def batch_pix_accuracy(output, target):
    """PixAcc"""
    # inputs are NDarray, output 4D, target 3D
    predict = F.argmax(output, 1)
    predict = predict.asnumpy() + 1
    target = target.asnumpy().astype(predict.dtype) + 1
    pixel_labeled = np.sum(target > 0)
    pixel_correct = np.sum((predict == target)*(target > 0))
    assert pixel_correct <= pixel_labeled, "Correct area should be smaller than Labeled"
    return pixel_correct, pixel_labeled 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:12,代碼來源:voc_segmentation.py

示例10: argmax

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def argmax(vec):
    idx = nd.argmax(vec, axis=1)
    return to_scalar(idx) 
開發者ID:fierceX,項目名稱:NER_BiLSTM_CRF_Chinese,代碼行數:5,代碼來源:model.py

示例11: _viterbi_decode

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def _viterbi_decode(self, feats):
        backpointers = []

        vvars = nd.full((1, self.tagset_size), -10000.,ctx=self.ctx)
        vvars[0, self.tag2idx[self.START_TAG]] = 0

        for feat in feats:
            bptrs_t = []
            viterbivars_t = []

            for next_tag in range(self.tagset_size):

                next_tag_var = vvars + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0, best_tag_id])

            vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1))
            backpointers.append(bptrs_t)

        terminal_var = vvars + self.transitions[self.tag2idx[self.STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0, best_tag_id]

        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        start = best_path.pop()
        assert start == self.tag2idx[self.START_TAG]
        best_path.reverse()
        return path_score, best_path 
開發者ID:fierceX,項目名稱:NER_BiLSTM_CRF_Chinese,代碼行數:34,代碼來源:model.py

示例12: _viterbi_decode

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import argmax [as 別名]
def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        vvars = nd.full((1, self.tagset_size), -10000.)
        vvars[0, self.tag2idx[START_TAG]] = 0

        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = vvars + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0, best_tag_id])
            # Now add in the emission scores, and assign vvars to the set
            # of viterbi variables we just computed
            vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1))
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = vvars + self.transitions[self.tag2idx[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0, best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag2idx[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path 
開發者ID:mahyarnajibi,項目名稱:SNIPER-mxnet,代碼行數:43,代碼來源:lstm_crf.py


注:本文中的mxnet.ndarray.argmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。