當前位置: 首頁>>代碼示例>>Python>>正文


Python ndarray.arange方法代碼示例

本文整理匯總了Python中mxnet.ndarray.arange方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.arange方法的具體用法?Python ndarray.arange怎麽用?Python ndarray.arange使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.arange方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_download_embed

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import arange [as 別名]
def test_download_embed():
    @text.embedding.register
    class Test(text.embedding._TokenEmbedding):
        # 33 bytes.
        pretrained_file_name_sha1 = \
            {'embedding_test.vec': '29b9a6511cf4b5aae293c44a9ec1365b74f2a2f8'}
        namespace = 'test'

        def __init__(self, embedding_root='embeddings', init_unknown_vec=nd.zeros, **kwargs):
            pretrained_file_name = 'embedding_test.vec'
            Test._check_pretrained_file_names(pretrained_file_name)

            super(Test, self).__init__(**kwargs)

            pretrained_file_path = Test._get_pretrained_file(embedding_root, pretrained_file_name)

            self._load_embedding(pretrained_file_path, ' ', init_unknown_vec)

    test_embed = text.embedding.create('test')
    assert test_embed.token_to_idx['hello'] == 1
    assert test_embed.token_to_idx['world'] == 2
    assert_almost_equal(test_embed.idx_to_vec[1].asnumpy(), (nd.arange(5) + 1).asnumpy())
    assert_almost_equal(test_embed.idx_to_vec[2].asnumpy(), (nd.arange(5) + 6).asnumpy())
    assert_almost_equal(test_embed.idx_to_vec[0].asnumpy(), nd.zeros((5,)).asnumpy()) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:26,代碼來源:test_contrib_text.py

示例2: unsorted_1d_segment_sum

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import arange [as 別名]
def unsorted_1d_segment_sum(input, seg_id, n_segs, dim):
    # TODO: support other dimensions
    assert dim == 0, 'MXNet only supports segment sum on first dimension'

    # Use SPMV to simulate segment sum
    ctx = input.context
    n_inputs = input.shape[0]
    input_shape_suffix = input.shape[1:]
    input = input.reshape(n_inputs, -1)
    n_range = nd.arange(n_inputs, dtype='int64').as_in_context(input.context)
    w_nnz = nd.ones(n_inputs).as_in_context(input.context)
    w_nid = nd.stack(seg_id, n_range, axis=0)
    w = nd.sparse.csr_matrix((w_nnz, (seg_id, n_range)), (n_segs, n_inputs))
    w = w.as_in_context(input.context)
    y = nd.dot(w, input)
    y = nd.reshape(y, (n_segs,) + input_shape_suffix)
    return y 
開發者ID:dmlc,項目名稱:dgl,代碼行數:19,代碼來源:tensor.py

示例3: generate_anchors

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import arange [as 別名]
def generate_anchors(base_size=16, ratios=nd.array([0.5, 1, 2]), scales=2**nd.arange(3,6)):
    """
    Generate anchor (reference) windows by enumerating aspect ratios X
    scales wrt a reference (0, 0, 15, 15) window.
    This implementation matches the original Faster-RCNN RPN generate_anchors().
    But all calculations are on mxnet.ndarray.NDArray.

    Refer to 
    https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/rpn/generate_anchors.py
    """

    base_anchor = nd.array([1, 1, base_size, base_size])
    ratio_anchors = _ratio_enum(base_anchor, ratios)
    anchors = nd.concatenate([_scale_enum(ratio_anchors[i, :], scales)
                                 for i in range(ratio_anchors.shape[0])])
    return anchors 
開發者ID:linmx0130,項目名稱:ya_mxdet,代碼行數:18,代碼來源:anchor_generator.py

示例4: map_anchors

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import arange [as 別名]
def map_anchors(ref_anchors, target_shape, scale_h, scale_w, ctx):
    ref_anchors = ref_anchors.as_in_context(ctx)
    ref_anchors = ref_anchors.reshape((1, -1, 1, 1))
    ref_anchors = ref_anchors.broadcast_to(target_shape)
    _n, _c, h, w = ref_anchors.shape
    ref_x = nd.arange(w).as_in_context(ctx).reshape((1, w)) / w
    ref_x = ref_x * scale_w
    ref_x = ref_x.broadcast_to((h, w))
    ref_y = nd.arange(h).as_in_context(ctx).reshape((h, 1)) / h
    ref_y = ref_y * scale_h
    ref_y = ref_y.broadcast_to((h, w))
    for anchor_i in range(_c//4):
        ref_anchors[0, anchor_i * 4] += ref_x
        ref_anchors[0, anchor_i * 4 + 1] += ref_y
        ref_anchors[0, anchor_i * 4 + 2] += ref_x
        ref_anchors[0, anchor_i * 4 + 3] += ref_y
    return ref_anchors 
開發者ID:linmx0130,項目名稱:ya_mxdet,代碼行數:19,代碼來源:anchor_generator.py

示例5: sparse_matrix

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import arange [as 別名]
def sparse_matrix(data, index, shape, force_format=False):
    fmt = index[0]
    if fmt == 'coo':
        if force_format:
            raise TypeError('MXNet backend only supports CSR format,'
                            ' but COO format is forced.')
        coord = index[1]
        # generate convert idx
        # FIXME: cannot use int64
        tmp_data = nd.arange(len(coord[0]), dtype=data.dtype, ctx=coord[0].context)
        tmp_spmat = nd.sparse.csr_matrix((tmp_data, (coord[0], coord[1])),
                tuple(shape), ctx=data.context)
        convert_idx = nd.cast(tmp_spmat.data, dtype='int64')
        # shuffle the data
        data = data[convert_idx]
        spmat = nd.sparse.csr_matrix((data, tmp_spmat.indices, tmp_spmat.indptr),
                tuple(shape), ctx=data.context)
        return spmat, convert_idx
    elif fmt == 'csr':
        indices = index[1]
        indptr = index[2]
        spmat = nd.sparse.csr_matrix((data, indices, indptr),
                tuple(shape), ctx=data.context)
        # No conversion is required.
        return spmat, None
    else:
        raise TypeError('Invalid format: %s.' % fmt) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:29,代碼來源:tensor.py

示例6: arange

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import arange [as 別名]
def arange(start, stop, dtype="int64"):
    if start >= stop:
        return nd.array([], dtype=data_type_dict()[dtype])
    else:
        return nd.arange(start, stop, dtype=data_type_dict()[dtype]) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:7,代碼來源:tensor.py

示例7: _sync_params_from_devices

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import arange [as 別名]
def _sync_params_from_devices(self):
        """Synchronizes parameters from devices to CPU. This function should be called after
        calling `update` that updates the parameters on the devices, before one can read the
        latest parameters from ``self._arg_params`` and ``self._aux_params``.

        For row_sparse parameters on devices, ther are pulled from KVStore with all row ids.

        """
        self._exec_group.get_params(self._arg_params, self._aux_params)
        if self._kvstore and self._update_on_kvstore:
            for param_name, param_val in sorted(self._arg_params.items()):
                if param_val.stype == 'row_sparse':
                    row_ids = nd.arange(0, param_val.shape[0], dtype='int64')
                    self._kvstore.row_sparse_pull(param_name, param_val, row_ids=row_ids)
        self._params_dirty = False 
開發者ID:TuSimple,項目名稱:simpledet,代碼行數:17,代碼來源:detection_module.py

示例8: test_jitter_synthetic_gp

# 需要導入模塊: from mxnet import ndarray [as 別名]
# 或者: from mxnet.ndarray import arange [as 別名]
def test_jitter_synthetic_gp(jitter_method, float_type, ctx) -> None:
    # TODO: Enable GPU tests on Jenkins
    if ctx == mx.Context("gpu") and not check_gpu_support():
        return
    # Initialize problem parameters
    batch_size = 1
    prediction_length = 50
    context_length = 5
    num_samples = 3

    # Initialize test data to generate Gaussian Process from
    lb = -5
    ub = 5
    dx = (ub - lb) / (prediction_length - 1)
    x_test = nd.arange(lb, ub + dx, dx, ctx=ctx, dtype=float_type).reshape(
        -1, 1
    )
    x_test = nd.tile(x_test, reps=(batch_size, 1, 1))

    # Define the GP hyper parameters
    amplitude = nd.ones((batch_size, 1, 1), ctx=ctx, dtype=float_type)
    length_scale = math.sqrt(0.4) * nd.ones_like(amplitude)
    sigma = math.sqrt(1e-5) * nd.ones_like(amplitude)

    # Instantiate desired kernel object and compute kernel matrix
    rbf_kernel = RBFKernel(amplitude, length_scale)

    # Generate samples from 0 mean Gaussian process with RBF Kernel and plot it
    gp = GaussianProcess(
        sigma=sigma,
        kernel=rbf_kernel,
        prediction_length=prediction_length,
        context_length=context_length,
        num_samples=num_samples,
        ctx=ctx,
        float_type=float_type,
        jitter_method=jitter_method,
        sample_noise=False,  # Returns sample without noise
    )

    # Generate training set on subset of interval using the sine function
    x_train = nd.array([-4, -3, -2, -1, 1], ctx=ctx, dtype=float_type).reshape(
        context_length, 1
    )
    x_train = nd.tile(x_train, reps=(batch_size, 1, 1))
    y_train = nd.sin(x_train.squeeze(axis=2))

    # Predict exact GP using the GP predictive mean and covariance using the same fixed hyper-parameters
    samples, predictive_mean, predictive_std = gp.exact_inference(
        x_train, y_train, x_test
    )

    assert (
        np.sum(np.isnan(samples.asnumpy())) == 0
    ), "NaNs in predictive samples!" 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:57,代碼來源:test_jitter.py


注:本文中的mxnet.ndarray.arange方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。