當前位置: 首頁>>代碼示例>>Python>>正文


Python nd.zeros方法代碼示例

本文整理匯總了Python中mxnet.nd.zeros方法的典型用法代碼示例。如果您正苦於以下問題:Python nd.zeros方法的具體用法?Python nd.zeros怎麽用?Python nd.zeros使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.nd的用法示例。


在下文中一共展示了nd.zeros方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def forward(self, pos):
        r"""Memory allocation and sampling

        Parameters
        ----------
        pos : tensor
            The positional tensor of shape (B, N, C)

        Returns
        -------
        tensor of shape (B, self.npoints)
            The sampled indices in each batch.
        """
        ctx = pos.context
        B, N, C = pos.shape
        pos = pos.reshape(-1, C)
        dist = nd.zeros((B * N), dtype=pos.dtype, ctx=ctx)
        start_idx = nd.random.randint(0, N - 1, (B, ), dtype=np.int, ctx=ctx)
        result = nd.zeros((self.npoints * B), dtype=np.int, ctx=ctx)
        farthest_point_sampler(pos, B, self.npoints, dist, start_idx, result)
        return result.reshape(B, self.npoints) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:23,代碼來源:fps.py

示例2: cv_rotate

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def cv_rotate(img, rot, resW, resH):
    cv2 = try_import_cv2()
    center = np.array((resW - 1, resH - 1)) / 2
    rot_rad = np.pi * rot / 180

    src_dir = get_dir([0, (resH - 1) * -0.5], rot_rad)
    dst_dir = np.array([0, (resH - 1) * -0.5], np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)

    src[0, :] = center
    src[1, :] = center + src_dir
    dst[0, :] = [(resW - 1) * 0.5, (resH - 1) * 0.5]
    dst[1, :] = np.array([(resW - 1) * 0.5, (resH - 1) * 0.5]) + dst_dir

    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])

    trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    dst_img = cv2.warpAffine(img, trans,
                             (resW, resH), flags=cv2.INTER_LINEAR)
    return dst_img 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:26,代碼來源:pose.py

示例3: transformBoxInvert

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def transformBoxInvert(pt, ul, br, resH, resW):
    # type: (Tensor, Tensor, Tensor, float, float, float, float) -> Tensor

    center = mx.nd.zeros(2)
    center[0] = (br[0] - 1 - ul[0]) / 2
    center[1] = (br[1] - 1 - ul[1]) / 2

    lenH = max(br[1] - ul[1], (br[0] - ul[0]) * resH / resW)
    lenW = lenH * resW / resH

    _pt = (pt * lenH) / resH

    if bool(((lenW - 1) / 2 - center[0]) > 0):
        _pt[0] = _pt[0] - ((lenW - 1) / 2 - center[0]).asscalar()
    if bool(((lenH - 1) / 2 - center[1]) > 0):
        _pt[1] = _pt[1] - ((lenH - 1) / 2 - center[1]).asscalar()

    new_point = mx.nd.zeros(2)
    new_point[0] = _pt[0] + ul[0]
    new_point[1] = _pt[1] + ul[1]
    return new_point 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:23,代碼來源:pose.py

示例4: load_data_fashion_mnist

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def load_data_fashion_mnist(batch_size, resize=None, root="~/.mxnet/datasets/fashion-mnist"):
    """download the fashion mnist dataest and then load into memory"""

    def transform_mnist(data, label):
        # Transform a batch of examples.
        if resize:
            n = data.shape[0]
            new_data = nd.zeros((n, resize, resize, data.shape[3]))
            for i in range(n):
                new_data[i] = image.imresize(data[i], resize, resize)
            data = new_data
        # change data from batch x height x width x channel to batch x channel x height x width
        return nd.transpose(data.astype('float32'), (0, 3, 1, 2)) / 255, label.astype('float32')

    mnist_train = gluon.data.vision.FashionMNIST(root=root, train=True, transform=None)
    mnist_test = gluon.data.vision.FashionMNIST(root=root, train=False, transform=None)
    # Transform later to avoid memory explosion.
    train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist)
    test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist)
    return (train_data, test_data) 
開發者ID:auroua,項目名稱:InsightFace_TF,代碼行數:22,代碼來源:utils_final.py

示例5: load_data_mnist

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def load_data_mnist(batch_size, resize=None, root="~/.mxnet/datasets/mnist"):
    """download the fashion mnist dataest and then load into memory"""

    def transform_mnist(data, label):
        # Transform a batch of examples.
        if resize:
            n = data.shape[0]
            new_data = nd.zeros((n, resize, resize, data.shape[3]))
            for i in range(n):
                new_data[i] = image.imresize(data[i], resize, resize)
            data = new_data
        # change data from batch x height x width x channel to batch x channel x height x width
        return nd.transpose(data.astype('float32'), (0, 3, 1, 2)) / 255, label.astype('float32')

    mnist_train = gluon.data.vision.MNIST(root=root, train=True, transform=None)
    mnist_test = gluon.data.vision.MNIST(root=root, train=False, transform=None)
    # Transform later to avoid memory explosion.
    train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist)
    test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist)
    return (train_data, test_data) 
開發者ID:auroua,項目名稱:InsightFace_TF,代碼行數:22,代碼來源:utils_final.py

示例6: predict_rnn

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def predict_rnn(rnn, prefix, num_chars, params, hidden_dim, ctx, idx_to_char,
                char_to_idx, get_inputs, is_lstm=False):
    """Predict the next chars given the prefix."""
    prefix = prefix.lower()
    state_h = nd.zeros(shape=(1, hidden_dim), ctx=ctx)
    if is_lstm:
        state_c = nd.zeros(shape=(1, hidden_dim), ctx=ctx)
    output = [char_to_idx[prefix[0]]]
    for i in range(num_chars + len(prefix)):
        X = nd.array([output[-1]], ctx=ctx)
        if is_lstm:
            Y, state_h, state_c = rnn(get_inputs(X), state_h, state_c, *params)
        else:
            Y, state_h = rnn(get_inputs(X), state_h, *params)
        if i < len(prefix) - 1:
            next_input = char_to_idx[prefix[i + 1]]
        else:
            next_input = int(Y[0].argmax(axis=1).asscalar())
        output.append(next_input)
    return ''.join([idx_to_char[i] for i in output]) 
開發者ID:auroua,項目名稱:InsightFace_TF,代碼行數:22,代碼來源:utils_final.py

示例7: test_get_nonzero

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def test_get_nonzero():
    '''
    feat = nd.zeros(shape = (4, 2))
    feat[0, 0] = 1
    feat[1, 1] = 1
    feat[2, 1] = 1
    feat[3, 0] = 1
    feat = nd.array([[0.6, 0.0, 0.0, 0.0],
                     [0.0, 0.4, 0.0, 0.0],
                     [0.0, 0.0, 1.2, 0.0],
                     [0.0, 0.0, 0.0,-0.4]])
    feat = nd.array([[[1,1,1,0,1],[1,0,0,0,1]],
                     [[1,1,1,0,1],[1,0,0,0,1]]])
    '''
    feat = nd.zeros(shape = (4, ))
    feat[2] = 1
    print(feat)

    feat_sparse = feat.tostype('csr')
    print(feat_sparse)

    indices = feat_sparse.indices
    print(indices)
    return 
開發者ID:Guanghan,項目名稱:mxnet-centernet,代碼行數:26,代碼來源:test_tensor_utils.py

示例8: __init__

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def __init__(self, options):
        if options.gpus[0] >= 0:
            try:
                self.ctx = mx.gpu()
                _ = nd.zeros((1,), ctx=self.ctx)
            except mx.base.MXNetError:
                print("No GPU available. Use CPU instead.")
                self.ctx = mx.cpu()
        else:
            self.ctx = mx.cpu()

        print("Creating model...")
        self.model = create_model(options.arch, options.heads, options.head_conv, ctx = self.ctx)
        if options.load_model_path != '':
            self.model = load_model(self.model, options.load_model_path, ctx = self.ctx)

        self.mean = np.array(options.mean, dtype=np.float32).reshape(1, 1, 3)
        self.std = np.array(options.std, dtype=np.float32).reshape(1, 1, 3)
        self.max_per_image = 100
        self.num_classes = options.num_classes
        self.scales = options.test_scales
        self.opt = options
        self.pause = True 
開發者ID:Guanghan,項目名稱:mxnet-centernet,代碼行數:25,代碼來源:base_detector.py

示例9: __iter__

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def __iter__(self):
        sample_indices = []
        label_counter = np.zeros(self._classes)
        shuffle_indices = np.arange(len(self._labels))
        np.random.shuffle(shuffle_indices)
        for idx in shuffle_indices:
            label = self._labels[idx]
            if label_counter[label] < self._num_per_class:
                sample_indices.append(idx)
                label_counter[label] += 1
            if label_counter.sum() == self._classes * self._num_per_class:
                break
        for idx, cnt in enumerate(label_counter):
            if cnt < self._num_per_class:
                raise ValueError("Number of samples for class {} is {} < {}".format(idx, cnt, self._num_per_class))
        return iter(sample_indices) 
開發者ID:hey-yahei,項目名稱:Quantization.MXNet,代碼行數:18,代碼來源:simulate_quantization.py

示例10: test_export

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def test_export():
    print("<<TEST: hybridize and export>>")
    bn_string_in_json_file = '"op": "BatchNorm"'
    export_file_name = "/tmp/test_merge_bn-" + time.strftime('%Y%m%d%H%M%S',time.localtime(time.time()))

    net = mobilenet1_0(pretrained=True)
    merge_bn(net)
    print("merge_bn ...[ok]")
    net.hybridize()
    print("hybridize ...[ok]")
    _ = net(nd.zeros(shape=(1, 3, 224, 224)))
    print("run hybrid graph forward ...[ok]")
    net.export(export_file_name, 0)
    print("export to", export_file_name, "...[ok]")
    with open(export_file_name+"-symbol.json", "r") as f:
        s = f.read()
        if bn_string_in_json_file not in s:
            print('[OK] op "BatchNorm" is not in exported file')
        else:
            print('[Error] op "BatchNorm" is in exported file')
    print() 
開發者ID:hey-yahei,項目名稱:Quantization.MXNet,代碼行數:23,代碼來源:test_merge_bn.py

示例11: test_quantize_symbol

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def test_quantize_symbol():
    print("<<TEST: Quantize symbol for mobilenet_v1_1_0>>")
    export_file_name = "/tmp/test_freeze_utils-" + time.strftime('%Y%m%d%H%M%S', time.localtime(time.time()))
    in_file_name = export_file_name + "-symbol.json"
    out_file_name = export_file_name + "-qsymbol.json"

    net = mobilenet1_0(pretrained=True)
    net.hybridize()
    _ = net(nd.zeros(shape=(1, 3, 224, 224)))
    net.export(export_file_name, 0)

    mobilenet_sym = sym.load(in_file_name)
    qsym = quantize_symbol(mobilenet_sym)
    qsym.save()

    print('Quantized symbol has saved to ' + out_file_name)
    print()
    return out_file_name 
開發者ID:hey-yahei,項目名稱:Quantization.MXNet,代碼行數:20,代碼來源:test_freeze.py

示例12: evaluate_accuracy_multi

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def evaluate_accuracy_multi(data_iterator, net, ctx):
    data_iterator.reset()
    acc = 0
    dummy_label = np.zeros((0,6))
    dummy_pred = np.zeros((0,6))
    t1 = time.time()
    for i, batch in enumerate(data_iterator):
        data, label = _get_batch_multi(batch, ctx, False)
        # acc += np.mean([accuracy(net(X), Y) for X, Y in zip(data, label)])
        # acc += np.mean([roc_auc_score(Y.asnumpy(), net(X).asnumpy()) for X, Y in zip(data, label)])
        output = np.vstack((net(X).asnumpy() for X in data))
        labels = np.vstack((Y.asnumpy() for Y in label))
        dummy_label = np.vstack((dummy_label, labels)) 
        dummy_pred = np.vstack((dummy_pred, output))
    # return acc / (i+1)
    # print dummy_label.shape, dummy_pred.shape
    dummy_pred_label = dummy_pred > 0.5
    for i in range(dummy_label.shape[1]):
        print i, confusion_matrix(dummy_label[:,i], dummy_pred_label[:,i])

    return roc_auc_score(dummy_label, dummy_pred), accuracy(dummy_pred, dummy_label), time.time() - t1 
開發者ID:Godricly,項目名稱:comment_toxic_CapsuleNet,代碼行數:23,代碼來源:utils.py

示例13: Route

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def Route(self, x):
        # b_mat = nd.repeat(self.b_mat.data(), repeats=x.shape[0], axis=0)#nd.stop_gradient(nd.repeat(self.b_mat.data(), repeats=x.shape[0], axis=0))
        b_mat = nd.zeros((x.shape[0],1,self.num_cap, self.num_locations), ctx=x.context)
        x_expand = nd.expand_dims(nd.expand_dims(x, axis=2),2)
        w_expand = nd.repeat(nd.expand_dims(self.w_ij.data(x.context),axis=0), repeats=x.shape[0], axis=0)
        u_ = w_expand*x_expand
        # u_ = nd.abs(w_expand - x_expand)
        u = nd.sum(u_, axis = 1)
        u_no_gradient = nd.stop_gradient(u)
        for i in range(self.route_num):
            c_mat = nd.softmax(b_mat, axis=2)
            if i == self.route_num -1:
                s = nd.sum(u * c_mat, axis=-1)
            else:
                s = nd.sum(u_no_gradient * c_mat, axis=-1)
            v = squash(s, 1)
            v1 = nd.expand_dims(v, axis=-1)
            if i != self.route_num - 1:
                update_term = nd.sum(u_no_gradient*v1, axis=1, keepdims=True)
                b_mat = b_mat + update_term
        return v 
開發者ID:Godricly,項目名稱:comment_toxic_CapsuleNet,代碼行數:23,代碼來源:capsule_block.py

示例14: load_data_fashion_mnist

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def load_data_fashion_mnist(batch_size, resize=None, root="~/.mxnet/datasets/fashion-mnist"):
    """download the fashion mnist dataest and then load into memory"""
    def transform_mnist(data, label):
        # Transform a batch of examples.
        if resize:
            n = data.shape[0]
            new_data = nd.zeros((n, resize, resize, data.shape[3]))
            for i in range(n):
                new_data[i] = image.imresize(data[i], resize, resize)
            data = new_data
        # change data from batch x height x width x channel to batch x channel x height x width
        return nd.transpose(data.astype('float32'), (0,3,1,2))/255, label.astype('float32')

    mnist_train = gluon.data.vision.FashionMNIST(root=root, train=True, transform=None)
    mnist_test = gluon.data.vision.FashionMNIST(root=root, train=False, transform=None)
    # Transform later to avoid memory explosion. 
    train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist)
    test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist)
    return (train_data, test_data) 
開發者ID:XiuweiHe,項目名稱:EmotionClassifier,代碼行數:21,代碼來源:utils.py

示例15: predict_rnn

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import zeros [as 別名]
def predict_rnn(rnn, prefix, num_chars, params, hidden_dim, ctx, idx_to_char,
                char_to_idx, get_inputs, is_lstm=False):
    """Predict the next chars given the prefix."""
    prefix = prefix.lower()
    state_h = nd.zeros(shape=(1, hidden_dim), ctx=ctx)
    if is_lstm:
        state_c = nd.zeros(shape=(1, hidden_dim), ctx=ctx)
    output = [char_to_idx[prefix[0]]]
    for i in range(num_chars + len(prefix)):
        X = nd.array([output[-1]], ctx=ctx)
        if is_lstm:
            Y, state_h, state_c = rnn(get_inputs(X), state_h, state_c, *params)
        else:
            Y, state_h = rnn(get_inputs(X), state_h, *params)
        if i < len(prefix)-1:
            next_input = char_to_idx[prefix[i+1]]
        else:
            next_input = int(Y[0].argmax(axis=1).asscalar())
        output.append(next_input)
    return ''.join([idx_to_char[i] for i in output]) 
開發者ID:XiuweiHe,項目名稱:EmotionClassifier,代碼行數:22,代碼來源:utils.py


注:本文中的mxnet.nd.zeros方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。