當前位置: 首頁>>代碼示例>>Python>>正文


Python nd.stack方法代碼示例

本文整理匯總了Python中mxnet.nd.stack方法的典型用法代碼示例。如果您正苦於以下問題:Python nd.stack方法的具體用法?Python nd.stack怎麽用?Python nd.stack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.nd的用法示例。


在下文中一共展示了nd.stack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: crop_resize_normalize

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def crop_resize_normalize(img, bbox_list, output_size,
                          mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
    output_list = []
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean, std)
    ])
    for bbox in bbox_list:
        x0 = max(int(bbox[0]), 0)
        y0 = max(int(bbox[1]), 0)
        x1 = min(int(bbox[2]), int(img.shape[1]))
        y1 = min(int(bbox[3]), int(img.shape[0]))
        w = x1 - x0
        h = y1 - y0
        res_img = image.fixed_crop(nd.array(img), x0, y0, w, h, (output_size[1], output_size[0]))
        res_img = transform_test(res_img)
        output_list.append(res_img)
    output_array = nd.stack(*output_list)
    return output_array 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:21,代碼來源:pose.py

示例2: default_mp_pad_batchify_fn

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def default_mp_pad_batchify_fn(data):
    """Use shared memory for collating data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        out = nd.empty((len(data),) + data[0].shape, dtype=data[0].dtype,
                       ctx=context.Context('cpu_shared', 0))
        return nd.stack(*data, out=out)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_mp_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        batch_size = len(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((batch_size, pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype, ctx=context.Context('cpu_shared', 0)) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:19,代碼來源:dataloader.py

示例3: crop_resize_normalize

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def crop_resize_normalize(img, bbox_list, output_size):
    output_list = []
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    for bbox in bbox_list:
        x0 = max(int(bbox[0]), 0)
        y0 = max(int(bbox[1]), 0)
        x1 = min(int(bbox[2]), int(img.shape[1]))
        y1 = min(int(bbox[3]), int(img.shape[0]))
        w = x1 - x0
        h = y1 - y0
        res_img = image.fixed_crop(nd.array(img), x0, y0, w, h, (output_size[1], output_size[0]))
        res_img = transform_test(res_img)
        output_list.append(res_img)
    output_array = nd.stack(*output_list)
    return output_array 
開發者ID:Angzz,項目名稱:panoptic-fpn-gluon,代碼行數:20,代碼來源:pose.py

示例4: bbox_overlaps

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def bbox_overlaps(anchors:mx.nd.NDArray, gt:mx.nd.NDArray):
    """
    Get IoU of the anchors and ground truth bounding boxes.
    The shape of anchors and gt should be (N, 4) and (M, 4)
    So the shape of return value is (N, M)
    """
    ret = []
    for i in range(gt.shape[0]):
        cgt = gt[i].reshape((1, 4)).broadcast_to(anchors.shape)
        # inter
        x0 = nd.max(nd.stack(anchors[:,0], cgt[:,0]), axis=0)
        y0 = nd.max(nd.stack(anchors[:,1], cgt[:,1]), axis=0)
        x1 = nd.min(nd.stack(anchors[:,2], cgt[:,2]), axis=0)
        y1 = nd.min(nd.stack(anchors[:,3], cgt[:,3]), axis=0)
        
        inter = _get_area(nd.concatenate([x0.reshape((-1, 1)), 
                                         y0.reshape((-1, 1)), 
                                         x1.reshape((-1, 1)), 
                                         y1.reshape((-1, 1))], axis=1))
        outer = _get_area(anchors) + _get_area(cgt) - inter
        iou = inter / outer
        ret.append(iou.reshape((-1, 1)))
    ret=nd.concatenate(ret, axis=1)
    return ret 
開發者ID:linmx0130,項目名稱:ya_mxdet,代碼行數:26,代碼來源:utils.py

示例5: hybrid_forward

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def hybrid_forward(
        self, F, past_target: Tensor, past_valid_length: Tensor
    ) -> Tuple[Tensor, Tensor]:
        """
        Return two tensors, of shape
        (batch_size, num_samples, max_prediction_length, target_dim)
        and (batch_size, num_samples) respectively.
        """
        batch_size = past_target.shape[0]
        assert past_valid_length.shape[0] == batch_size

        target_shape = (batch_size, self.num_parallel_samples, 25)
        pred_target = nd.stack(
            nd.random.uniform(shape=target_shape),
            nd.random.randint(0, 10, shape=target_shape).astype(np.float32),
            axis=-1,
        )
        pred_valid_length = nd.random.randint(
            15, 25 + 1, shape=target_shape[:2]
        )

        return pred_target, pred_valid_length 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:24,代碼來源:test_tpp_predictor.py

示例6: extract_edge_bbox

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def extract_edge_bbox(g):
    '''bbox encoding'''
    src, dst = g.edges(order='eid')
    n = g.number_of_edges()
    src_bbox = g.ndata['pred_bbox'][src.asnumpy()]
    dst_bbox = g.ndata['pred_bbox'][dst.asnumpy()]
    edge_bbox = nd.zeros((n, 4), ctx=g.ndata['pred_bbox'].context)
    edge_bbox[:,0] = nd.stack(src_bbox[:,0], dst_bbox[:,0]).min(axis=0)
    edge_bbox[:,1] = nd.stack(src_bbox[:,1], dst_bbox[:,1]).min(axis=0)
    edge_bbox[:,2] = nd.stack(src_bbox[:,2], dst_bbox[:,2]).max(axis=0)
    edge_bbox[:,3] = nd.stack(src_bbox[:,3], dst_bbox[:,3]).max(axis=0)
    return edge_bbox 
開發者ID:dmlc,項目名稱:dgl,代碼行數:14,代碼來源:build_graph.py

示例7: default_pad_batchify_fn

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def default_pad_batchify_fn(data):
    """Collate data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        return nd.stack(*data)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((len(data), pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:16,代碼來源:dataloader.py

示例8: tsn_mp_batchify_fn

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def tsn_mp_batchify_fn(data):
    """Collate data into batch. Use shared memory for stacking.
    Modify default batchify function for temporal segment networks.
    Change `nd.stack` to `nd.concat` since batch dimension already exists.
    """
    if isinstance(data[0], nd.NDArray):
        return nd.concat(*data, dim=0)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [tsn_mp_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        return nd.array(data, dtype=data.dtype,
                        ctx=context.Context('cpu_shared', 0)) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:16,代碼來源:dataloader.py

示例9: _get_area

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def _get_area(bbox:mx.nd.NDArray):
    zeros = mx.nd.zeros_like(bbox[:, 0])
    width = mx.nd.max(nd.stack(bbox[:, 2] - bbox[:, 0], zeros), axis=0)
    height = mx.nd.max(nd.stack(bbox[:, 3] - bbox[:, 1], zeros), axis=0)
    return width * height 
開發者ID:linmx0130,項目名稱:ya_mxdet,代碼行數:7,代碼來源:utils.py

示例10: select_class_generator

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def select_class_generator(class_id):
    def select_class(img, label):
        ret_label = []
        for item in label:
            if item[4] == class_id:
                ret_label.append(item)
        return img, np.stack(ret_label)
    return select_class 
開發者ID:linmx0130,項目名稱:ya_mxdet,代碼行數:10,代碼來源:utils.py

示例11: forward

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def forward(self, feature, data, begin_state):
        num_nodes, batch_size, length, _ = data.shape

        data = nd.split(data, axis=2, num_outputs=length, squeeze_axis=1)

        outputs, state = [], begin_state
        for input in data:
            output, state = self.forward_single(feature, input, state)
            outputs.append(output)

        outputs = nd.stack(*outputs, axis=2)
        return outputs, state 
開發者ID:panzheyi,項目名稱:ST-MetaNet,代碼行數:14,代碼來源:cell.py

示例12: get_aggregate_fn

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def get_aggregate_fn(agg):
    """Internal function to get the aggregation function for node data
    generated from different relations.

    Parameters
    ----------
    agg : str
        Method for aggregating node features generated by different relations.
        Allowed values are 'sum', 'max', 'min', 'mean', 'stack'.

    Returns
    -------
    callable
        Aggregator function that takes a list of tensors to aggregate
        and returns one aggregated tensor.
    """
    if agg == 'sum':
        fn = nd.sum
    elif agg == 'max':
        fn = nd.max
    elif agg == 'min':
        fn = nd.min
    elif agg == 'mean':
        fn = nd.mean
    elif agg == 'stack':
        fn = None  # will not be called
    else:
        raise DGLError('Invalid cross type aggregator. Must be one of '
                       '"sum", "max", "min", "mean" or "stack". But got "%s"' % agg)
    if agg == 'stack':
        def stack_agg(inputs, dsttype):  # pylint: disable=unused-argument
            if len(inputs) == 0:
                return None
            return nd.stack(*inputs, axis=1)
        return stack_agg
    else:
        def aggfn(inputs, dsttype):  # pylint: disable=unused-argument
            if len(inputs) == 0:
                return None
            stacked = nd.stack(*inputs, axis=0)
            return fn(stacked, axis=0)
        return aggfn 
開發者ID:dmlc,項目名稱:dgl,代碼行數:44,代碼來源:hetero.py

示例13: ten_crop

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def ten_crop(src, size):
    """Crop 10 regions from an array.
    This is performed same as:
    http://chainercv.readthedocs.io/en/stable/reference/transforms.html#ten-crop

    This method crops 10 regions. All regions will be in shape
    :obj`size`. These regions consist of 1 center crop and 4 corner
    crops and horizontal flips of them.
    The crops are ordered in this order.
    * center crop
    * top-left crop
    * bottom-left crop
    * top-right crop
    * bottom-right crop
    * center crop (flipped horizontally)
    * top-left crop (flipped horizontally)
    * bottom-left crop (flipped horizontally)
    * top-right crop (flipped horizontally)
    * bottom-right crop (flipped horizontally)

    Parameters
    ----------
    src : mxnet.nd.NDArray
        Input image.
    size : tuple
        Tuple of length 2, as (width, height) of the cropped areas.

    Returns
    -------
    mxnet.nd.NDArray
        The cropped images with shape (10, size[1], size[0], C)

    """
    h, w, _ = src.shape
    ow, oh = size

    if h < oh or w < ow:
        raise ValueError(
            "Cannot crop area {} from image with size ({}, {})".format(str(size), h, w))

    center = src[(h - oh) // 2:(h + oh) // 2, (w - ow) // 2:(w + ow) // 2, :]
    tl = src[0:oh, 0:ow, :]
    bl = src[h - oh:h, 0:ow, :]
    tr = src[0:oh, w - ow:w, :]
    br = src[h - oh:h, w - ow:w, :]
    crops = nd.stack(*[center, tl, bl, tr, br], axis=0)
    crops = nd.concat(*[crops, nd.flip(crops, axis=2)], dim=0)
    return crops 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:50,代碼來源:image.py

示例14: decode_centernet

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def decode_centernet(heat, wh, reg=None, cat_spec_wh=False, K=100, flag_split=False):
    batch, cat, height, width = heat.shape

    # perform nms on heatmaps, find the peaks
    heat = _nms(heat)

    scores, inds, clses, ys, xs = _topk(heat, K=K)
    if reg is not None:
        reg = _tranpose_and_gather_feat(reg, inds)
        reg = nd.reshape(reg, (batch, K, 2))
        xs = nd.reshape(xs, (batch, K, 1)) + reg[:, :, 0:1]
        ys = nd.reshape(ys, (batch, K, 1)) + reg[:, :, 1:2]
    else:
        xs = nd.reshape(xs, (batch, K, 1)) + 0.5
        ys = nd.reshape(ys, (batch, K, 1)) + 0.5

    wh = _tranpose_and_gather_feat(wh, inds)
    if cat_spec_wh:
        wh = nd.reshape(wh, (batch, K, cat, 2))
        clses_ind = nd.reshape(clses, (batch, K, 1, 1))

        clses_ind = nd.stack(clses_ind, clses_ind, axis=3)   #becomes (batch, K, 1, 2)
        clses_ind = clses_ind.astype('int64')

        wh = wh.gather_nd(2, clses_ind)
        wh = nd.reshape(wh, (batch, K, 2))
    else:
        wh = nd.reshape(wh, (batch, K, 2))

    clses  = nd.reshape(clses, (batch, K, 1)).astype('float32')
    scores = nd.reshape(scores, (batch, K, 1))

    bboxes =  nd.concat(xs - wh[:, :, 0:1] / 2,
                        ys - wh[:, :, 1:2] / 2,
                        xs + wh[:, :, 0:1] / 2,
                        ys + wh[:, :, 1:2] / 2,
                        dim=2)

    if flag_split is True:
        return bboxes, scores, clses
    else:
        detections = nd.concat(bboxes, scores, clses, dim=2)
        return detections 
開發者ID:Guanghan,項目名稱:mxnet-centernet,代碼行數:45,代碼來源:decoder.py

示例15: forward

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import stack [as 別名]
def forward(self, feature, label, begin_states, is_training):
        ''' Decode the hidden states to a temporal sequence.

        Parameters
        ----------
        feature: a NDArray with shape [n, d].
        label: a NDArray with shape [n, b, t, d].
        begin_states: a list of hidden states (list of hidden units with shape [n, b, d]) of RNNs.
        is_training: bool
        
        Returns
        -------
            outputs: the prediction, which is a NDArray with shape [n, b, t, d]
        '''
        ctx = label.context

        num_nodes, batch_size, seq_len, _ = label.shape 
        aux = label[:,:,:, self.output_dim:] # [n,b,t,d]
        label = label[:,:,:, :self.output_dim] # [n,b,t,d]
        
        go = nd.zeros(shape=(num_nodes, batch_size, self.input_dim), ctx=ctx)
        output, states = [], begin_states

        for i in range(seq_len):
            # get next input
            if i == 0: data = go
            else:
                prev = nd.concat(output[i - 1], aux[:,:,i - 1], dim=-1)
                truth = nd.concat(label[:,:,i - 1], aux[:,:,i - 1], dim=-1)
                if is_training and self.use_sampling: value = self.sampling()
                else: value = 0
                data = value * truth + (1 - value) * prev

            # unroll 1 step
            for depth, cell in enumerate(self.cells):
                data, states[depth] = cell.forward_single(feature, data, states[depth])
                if self.graphs[depth] is not None:
                    _data = 0
                    for g in self.graphs[depth]:
                        _data = _data + g(data, feature)
                    data = _data / len(self.graphs[depth])

            # append feature to output
            _feature = nd.expand_dims(feature, axis=1) # [n, 1, d]
            _feature = nd.broadcast_to(_feature, shape=(0, batch_size, 0)) # [n, b, d]
            data = nd.concat(data, _feature, dim=-1) # [n, b, t, d]

            # proj output to prediction
            data = nd.reshape(data, shape=(num_nodes * batch_size, -1))
            data = self.proj(data)
            data = nd.reshape(data, shape=(num_nodes, batch_size, -1))
            
            output.append(data)

        output = nd.stack(*output, axis=2)
        return output 
開發者ID:panzheyi,項目名稱:ST-MetaNet,代碼行數:58,代碼來源:seq2seq.py


注:本文中的mxnet.nd.stack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。