當前位置: 首頁>>代碼示例>>Python>>正文


Python nd.sqrt方法代碼示例

本文整理匯總了Python中mxnet.nd.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python nd.sqrt方法的具體用法?Python nd.sqrt怎麽用?Python nd.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.nd的用法示例。


在下文中一共展示了nd.sqrt方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: hybrid_forward

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def hybrid_forward(self, F, X, y=None):
        # import pdb; pdb.set_trace()
        X = self.net[0](X) # Conv1
        X = self.net[1](X) # Primary Capsule
        X = self.net[2](X) # Digital Capsule
        # import pdb ; pdb.set_trace()
        X = X.reshape((X.shape[0],X.shape[2], X.shape[4]))
        # get length of vector for margin loss calculation
        X_l2norm = nd.sqrt((X**2).sum(axis=-1))
        # import pdb ; pdb.set_trace()
        prob = nd.softmax(X_l2norm, axis=-1)

        if y is not None:
            max_len_indices = y
        else:
            
            max_len_indices = nd.argmax(prob,axis=-1)


        y_tile = nd.tile(y.expand_dims(axis=1), reps=(1, X.shape[-1]))
        batch_activated_capsules = nd.pick(X, y_tile, axis=1, keepdims=True)

        reconstrcutions = self.net[3](batch_activated_capsules)

        return  prob, X_l2norm, reconstrcutions 
開發者ID:tonysy,項目名稱:CapsuleNet-Gluon,代碼行數:27,代碼來源:CapsuleNet.py

示例2: global_norm

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def global_norm(arrays: Union[Generator[NDArray, NDArray, NDArray], List[NDArray], Tuple[NDArray]]) -> NDArray:
    """
    Calculate global norm on list or tuple of NDArrays using this formula:
        `global_norm = sqrt(sum([l2norm(p)**2 for p in parameters]))`

    :param arrays: list or tuple of parameters to calculate global norm on
    :return: single-value NDArray
    """
    def _norm(array):
        if array.stype == 'default':
            x = array.reshape((-1,))
            return nd.dot(x, x)
        return array.norm().square()

    total_norm = nd.add_n(*[_norm(arr) for arr in arrays])
    total_norm = nd.sqrt(total_norm)
    return total_norm 
開發者ID:NervanaSystems,項目名稱:coach,代碼行數:19,代碼來源:utils.py

示例3: get_distance_matrix

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def get_distance_matrix(x):
    """Get distance matrix given a matrix. Used in testing."""
    square = nd.sum(x ** 2.0, axis=1, keepdims=True)
    distance_square = square + square.transpose() - (2.0 * nd.dot(x, x.transpose()))
    return nd.sqrt(distance_square) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:7,代碼來源:train.py

示例4: grad_clipping

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def grad_clipping(params, clipping_norm, ctx):
    """Gradient clipping."""
    if clipping_norm is not None:
        norm = nd.array([0.0], ctx)
        for p in params:
            norm += nd.sum(p.grad ** 2)
        norm = nd.sqrt(norm).asscalar()
        if norm > clipping_norm:
            for p in params:
                p.grad[:] *= clipping_norm / norm 
開發者ID:auroua,項目名稱:InsightFace_TF,代碼行數:12,代碼來源:utils_final.py

示例5: _merge_bn

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def _merge_bn(net, conv_name="conv", bn_name="batchnorm", exclude=[]):
    conv_lst = []
    def _collect_conv(m):
        if isinstance(m, nn.Conv2D):
            assert not hasattr(m, "gamma"), "Don't merge bn to a conv with fake bn! ({})".format(m.name)
            conv_lst.append(m)
    net.apply(_collect_conv)

    bn_names = [c.name.replace(conv_name, bn_name) for c in conv_lst]
    for conv, bn in zip(conv_lst, bn_names):
        params = net.collect_params(bn + "_")
        if len(params.keys()) != 0 and conv not in exclude:
            print("Merge {} to {}".format(bn, conv.name))
            gamma = params[bn + "_gamma"].data()
            beta = params[bn + "_beta"].data()
            mean = params[bn + "_running_mean"].data()
            var = params[bn + "_running_var"].data()

            weight = conv.weight.data()
            w_shape = conv.weight.shape
            cout = w_shape[0]
            conv.weight.set_data( (weight.reshape(cout, -1) * gamma.reshape(-1, 1) \
                                  / nd.sqrt(var + 1e-10).reshape(-1, 1)).reshape(w_shape) )
            if conv.bias is None:
                conv._kwargs['no_bias'] = False
                conv.bias = conv.params.get('bias',
                                            shape=(cout,), init="zeros",
                                            allow_deferred_init=True)
                conv.bias.initialize()
            bias = conv.bias.data()
            conv.bias.set_data(gamma * (bias - mean) / nd.sqrt(var + 1e-10) + beta) 
開發者ID:hey-yahei,項目名稱:Quantization.MXNet,代碼行數:33,代碼來源:merge_bn.py

示例6: squash

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def squash(x, axis):
    s_squared_norm = nd.sum(nd.square(x), axis, keepdims=True)
    # if s_squared_norm is really small, we will be in trouble
    # so I removed the s_quare terms
    # scale = s_squared_norm / ((1 + s_squared_norm) * nd.sqrt(s_squared_norm + 1e-9))
    # return x * scale
    scale = nd.sqrt(s_squared_norm + 1e-9)
    return x / scale 
開發者ID:Godricly,項目名稱:comment_toxic_CapsuleNet,代碼行數:10,代碼來源:conv_cap.py

示例7: forward

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def forward(self, x):
        x = nd.sqrt(nd.sum(nd.square(x), 1))
        return x 
開發者ID:Godricly,項目名稱:comment_toxic_CapsuleNet,代碼行數:5,代碼來源:capsule_block.py

示例8: get_value

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def get_value(self):
		return { self.name: nd.sqrt(self.loss / (self.cnt + 1e-8)) } 
開發者ID:panzheyi,項目名稱:ST-MetaNet,代碼行數:4,代碼來源:metric.py

示例9: squash

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def squash(self,vectors,axis):
        epsilon = 1e-9
        vectors_l2norm = nd.square(vectors).sum(axis=axis,keepdims=True)#.expand_dims(axis=axis)
    
        scale_factor = vectors_l2norm / (1 + vectors_l2norm) 
        vectors_squashed = scale_factor * (vectors / nd.sqrt(vectors_l2norm+epsilon)) # element-wise

        return vectors_squashed 
開發者ID:sxhxliang,項目名稱:CapsNet_Mxnet,代碼行數:10,代碼來源:CapsLayers.py

示例10: forward

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def forward(self, x):
        #(batch_size, 1, 10, 16, 1) =>(batch_size,10, 16)=> (batch_size, 10, 1)
        x_shape = x.shape
        x = x.reshape(shape=(x_shape[0],x_shape[2],x_shape[3]))

        x_l2norm = nd.sqrt((x.square()).sum(axis=-1))
        # prob = nd.softmax(x_l2norm, axis=-1)
        return x_l2norm 
開發者ID:sxhxliang,項目名稱:CapsNet_Mxnet,代碼行數:10,代碼來源:CapsLayers.py

示例11: test_periodic_kernel

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import sqrt [as 別名]
def test_periodic_kernel(x1, x2, amplitude, length_scale, exact) -> None:
    tol = 1e-5
    batch_size = amplitude.shape[0]
    history_length_1 = x1.shape[0]
    history_length_2 = x2.shape[0]
    num_features = x1.shape[1]
    if batch_size > 1:
        x1 = nd.tile(x1, reps=(batch_size, 1, 1))
        x2 = nd.tile(x2, reps=(batch_size, 1, 1))
        for i in range(1, batch_size):
            x1[i, :, :] = (i + 1) * x1[i, :, :]
            x2[i, :, :] = (i - 3) * x2[i, :, :]
    else:
        x1 = x1.reshape(batch_size, history_length_1, num_features)
        x2 = x2.reshape(batch_size, history_length_2, num_features)
    amplitude = amplitude.reshape(batch_size, 1, 1)
    length_scale = length_scale.reshape(batch_size, 1, 1)
    frequency = 1 / 24 * nd.ones_like(length_scale)
    periodic = PeriodicKernel(amplitude, length_scale, frequency)

    exact = amplitude * nd.exp(
        -2
        * nd.sin(frequency * math.pi * nd.sqrt(exact)) ** 2
        / length_scale ** 2
    )

    res = periodic.kernel_matrix(x1, x2)
    assert nd.norm(exact - res) < tol


# This test is based off of a simple single batch with different history lengths
# from gpytorch, where the exact is computed inside the test rather than hard-coded 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:34,代碼來源:test_periodic_kernel.py


注:本文中的mxnet.nd.sqrt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。