當前位置: 首頁>>代碼示例>>Python>>正文


Python nd.load方法代碼示例

本文整理匯總了Python中mxnet.nd.load方法的典型用法代碼示例。如果您正苦於以下問題:Python nd.load方法的具體用法?Python nd.load怎麽用?Python nd.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.nd的用法示例。


在下文中一共展示了nd.load方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_model

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import load [as 別名]
def load_model(symbol_file, param_file, logger=None):
    cur_path = os.path.dirname(os.path.realpath(__file__))
    symbol_file_path = os.path.join(cur_path, symbol_file)
    if logger is not None:
        logger.info('Loading symbol from file %s' % symbol_file_path)
    symbol = mx.sym.load(symbol_file_path)

    param_file_path = os.path.join(cur_path, param_file)
    if logger is not None:
        logger.info('Loading params from file %s' % param_file_path)
    save_dict = nd.load(param_file_path)
    arg_params = {}
    aux_params = {}
    for k, v in save_dict.items():
        tp, name = k.split(':', 1)
        if tp == 'arg':
            arg_params[name] = v
        if tp == 'aux':
            aux_params[name] = v
    return symbol, arg_params, aux_params 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:imagenet_inference.py

示例2: load_model

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import load [as 別名]
def load_model(_symbol_file, _param_file, _logger=None):
    """load existing symbol model"""
    cur_path = os.path.dirname(os.path.realpath(__file__))
    symbol_file_path = os.path.join(cur_path, _symbol_file)
    if _logger is not None:
        _logger.info('Loading symbol from file %s' % symbol_file_path)
    symbol = mx.sym.load(symbol_file_path)

    param_file_path = os.path.join(cur_path, _param_file)
    if _logger is not None:
        _logger.info('Loading params from file %s' % param_file_path)
    save_dict = nd.load(param_file_path)
    _arg_params = {}
    _aux_params = {}
    for k, v in save_dict.items():
        tp, name = k.split(':', 1)
        if tp == 'arg':
            _arg_params[name] = v
        if tp == 'aux':
            _aux_params[name] = v
    return symbol, _arg_params, _aux_params 
開發者ID:intel,項目名稱:optimized-models,代碼行數:23,代碼來源:inference.py

示例3: load_model

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import load [as 別名]
def load_model(symbol_file, param_file, mlogger=None):
    """load existing symbol model"""
    cur_path = os.path.dirname(os.path.realpath(__file__))
    symbol_file_path = os.path.join(cur_path, symbol_file)
    if mlogger is not None:
        mlogger.info('Loading symbol from file %s' % symbol_file_path)
    symbol = mx.sym.load(symbol_file_path)

    param_file_path = os.path.join(cur_path, param_file)
    if mlogger is not None:
        mlogger.info('Loading params from file %s' % param_file_path)
    save_dict = nd.load(param_file_path)
    marg_params = {}
    maux_params = {}
    for k, v in save_dict.items():
        tp, name = k.split(':', 1)
        if tp == 'arg':
            marg_params[name] = v
        if tp == 'aux':
            maux_params[name] = v
    return symbol, marg_params, maux_params 
開發者ID:intel,項目名稱:optimized-models,代碼行數:23,代碼來源:wd_gen_qsym_subgraph.py

示例4: initialize_inference

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import load [as 別名]
def initialize_inference(inference, pretrained, start_epoch):
    if pretrained:
        print('Loading the pretrained model')
        vggface_weights = nd.load('ckpt/VGG-FACE/VGG_FACE-0000.params')
        # change the name
        checkpoint = {}
        vgg_face_layers = [2, 2, 3, 3, 3]
        for k, v in vggface_weights.items():
            if 'conv' in k:
                ind1, ind2, sub_name = k.split('_')
                ind1 = int(ind1.replace('arg:conv', '')) - 1
                ind2 = int(ind2[-1]) - 1
                ind = sum(vgg_face_layers[:ind1]) + ind2
                key = inference.name + '_conv' + str(ind) + '_' + sub_name
                checkpoint[key] = v

        # load the weights
        for k in inference.collect_params().keys():
            if k in checkpoint:
                inference.collect_params()[k]._load_init(checkpoint[k], ctx)
                print('Loaded %s weights from checkpoints' % k)
            else:
                inference.collect_params()[k].initialize(ctx=ctx)
                print('Initialize %s weights' % k)
        print('Done')
    elif start_epoch > 0:
        print('Loading the weights from [%d] epoch' % start_epoch)
        inference.load_params(os.path.join(args.ckpt_dir, args.prefix, '%s-%d.params' % (args.prefix, start_epoch)), ctx)
    else:
        inference.collect_params().initialize(ctx=ctx)
    return inference 
開發者ID:ShownX,項目名稱:mxnet-E2FAR,代碼行數:33,代碼來源:E2FAR.py

示例5: benchmark_score

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import load [as 別名]
def benchmark_score(symbol_file, ctx, batch_size, num_batches, logger=None):
    # get mod
    cur_path = os.path.dirname(os.path.realpath(__file__))
    symbol_file_path = os.path.join(cur_path, symbol_file)
    if logger is not None:
        logger.info('Loading symbol from file %s' % symbol_file_path)
    sym = mx.sym.load(symbol_file_path)
    mod = mx.mod.Module(symbol=sym, context=ctx)
    mod.bind(for_training     = False,
             inputs_need_grad = False,
             data_shapes      = [('data', (batch_size,)+data_shape)])
    mod.init_params(initializer=mx.init.Xavier(magnitude=2.))

    # get data
    data = [mx.random.uniform(-1.0, 1.0, shape=shape, ctx=ctx) for _, shape in mod.data_shapes]
    batch = mx.io.DataBatch(data, []) # empty label

    # run
    dry_run = 5                 # use 5 iterations to warm up
    for i in range(dry_run+num_batches):
        if i == dry_run:
            tic = time.time()
        mod.forward(batch, is_train=False)
        for output in mod.get_outputs():
            output.wait_to_read()

    # return num images per second
    return num_batches*batch_size/(time.time() - tic) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:30,代碼來源:imagenet_inference.py

示例6: load_object

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import load [as 別名]
def load_object(filename):
    with open(filename, 'rb') as input:
        return pickle.load(input) 
開發者ID:intel,項目名稱:optimized-models,代碼行數:5,代碼來源:inference.py

示例7: __init__

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import load [as 別名]
def __init__(self, net, params_filename):
        """
        A helper for freezing.
        :param net: mxnet.gluon.nn.Block
            The origin net that you want to load trained parameters and freeze.
        :param params_filename: str
            The filename of the trained parameters.
        # :param input_shape: tuple
        #     The shape of input. For example, (1, 3, 224, 224) for MobileNet.
        """
        self.origin_net = net
        self.gluon_params_filename = params_filename
        self.sym, self.args, self.auxes = None, None, None

        net.load_parameters(params_filename, ignore_extra=True)
        net.hybridize()
        x = mx.sym.var('data')
        y = net(x)
        y = mx.sym.SoftmaxOutput(data=y, name='softmax')
        self.sym = mx.symbol.load_json(y.tojson()).get_backend_symbol("MKLDNN")
        self.args = {}
        self.auxes = {}
        params = net.collect_params()
        # print(params)
        for param in params.values():
            v = param._reduce()
            k = param.name
            if 'running' in k:
                self.auxes[k] = v
            else:
                self.args[k] = v 
開發者ID:hey-yahei,項目名稱:Quantization.MXNet,代碼行數:33,代碼來源:freeze.py

示例8: _act_max_list

# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import load [as 別名]
def _act_max_list(self):
        gluon_params = nd.load(self.gluon_params_filename)
        act_max_list = OrderedDict()
        for k in gluon_params.keys():
            *others, attr_name = k.split(".")
            if attr_name == "act_max":
                atom_block = functools.reduce(
                    lambda b, n: b[int(n)] if self._is_number(n) else getattr(b, n),
                    others, self.origin_net
                )
                act_max_list[f'{atom_block.name}'] = gluon_params[k].asscalar()
        return act_max_list 
開發者ID:hey-yahei,項目名稱:Quantization.MXNet,代碼行數:14,代碼來源:freeze.py


注:本文中的mxnet.nd.load方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。