當前位置: 首頁>>代碼示例>>Python>>正文


Python mxnet.nd方法代碼示例

本文整理匯總了Python中mxnet.nd方法的典型用法代碼示例。如果您正苦於以下問題:Python mxnet.nd方法的具體用法?Python mxnet.nd怎麽用?Python mxnet.nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet的用法示例。


在下文中一共展示了mxnet.nd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def __call__(self, *args, **kwargs):
        inputs, pars = get_in_data(op=self.op, *args, **kwargs)
        op_type = self.name
        name = pars[1].pop('name', None)
        input_type = pars[1].pop('__input_type__', None)
        if input_type is None:
            input_type = type(inputs[0])
        if op_type not in self.cache:
            # register operator
            self.cache[op_type] = True
            self.register()
        if input_type is mx.sym.Symbol:
            return mx.sym.Custom(*inputs, mobula_pars=pars_encode(pars), op_type=op_type)
        if hasattr(mx, 'numpy'):
            inputs = [x.as_nd_ndarray() if isinstance(
                x, mx.np.ndarray) else x for x in inputs]
        return mx.nd.Custom(*inputs, mobula_pars=pars_encode(pars), op_type=op_type, name=name) 
開發者ID:wkcn,項目名稱:MobulaOP,代碼行數:19,代碼來源:mx.py

示例2: plot_univariate

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def plot_univariate(samples, dist, buffer=0, **kwargs):
    """
    Visual inspection by plotting the distribution: plots a histogram of the samples along with

    :param samples: Samples from the distribution
    :type samples: (mx.nd.NDArray, np.ndarray)
    :param buffer: additional range to plot the distribution over
    :param dist: Distribution that these are samples from (scipy.stats)
    :param kwargs: Keyword arguments for the distribution (e.g. loc, scale)
    """
    if isinstance(samples, mx.nd.NDArray):
        samples = samples.asnumpy().ravel()
    elif isinstance(samples, np.ndarray):
        samples = samples.ravel()
    else:
        raise ValueError("Unexpected type for samples: {}, expected mx.nd.NDArray or np.ndarray".format(type(samples)))

    import matplotlib.pyplot as plt
    fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(111)
    ax.hist(samples, bins=301, density=True)
    x = np.linspace(samples.min() - buffer, samples.max() + buffer, num=301)
    ax.plot(x, dist.pdf(x, **kwargs).reshape(-1, 1))
    plt.show() 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:26,代碼來源:testutils.py

示例3: forward

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def forward(self, is_train, req, in_data, out_data, aux):
        a = in_data[0]
        n = a.shape[-1]
        if req[0] != 'null':
            if req[0] == 'write':
                b = out_data[0]
            else:
                b = mx.nd.zeros_like(out_data[0])
            index = mx.nd.arange(start=0, stop=n, step=1, dtype=np.int32)
            identity = mx.nd.one_hot(index, depth=n, dtype=a.dtype)
            dim_diff = len(b.shape) - len(identity.shape)
            if dim_diff > 0:
                res_shape = (1,)*dim_diff + identity.shape
                identity = mx.nd.reshape(identity, shape=res_shape)
            mx.nd.broadcast_to(identity, shape=out_data[0].shape, out=b)
            b *= mx.nd.expand_dims(a, axis=-1)
            if req[0] != 'write':
                self.assign(out_data[0], req[0], b) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:20,代碼來源:customop.py

示例4: _compute_K

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def _compute_K(self, F, X, lengthscale, variance, X2=None):
        """
        The internal interface for the actual covariance matrix computation.

        :param F: MXNet computation type <mx.sym, mx.nd>.
        :param X: the first set of inputs to the kernel.
        :type X: MXNet NDArray or MXNet Symbol
        :param X2: (optional) the second set of arguments to the kernel. If X2 is None, this computes a square
        covariance matrix of X. In other words, X2 is internally treated as X.
        :type X2: MXNet NDArray or MXNet Symbol
        :param variance: the variance parameter (scalar), which scales the whole covariance matrix.
        :type variance: MXNet NDArray or MXNet Symbol
        :param lengthscale: the lengthscale parameter.
        :type lengthscale: MXNet NDArray or MXNet Symbol
        :return: The covariance matrix.
        :rtype: MXNet NDArray or MXNet Symbol
        """
        R2 = self._compute_R2(F, X, lengthscale, variance, X2=X2)
        R = F.sqrt(F.clip(R2, 1e-14, np.inf))
        return F.broadcast_mul(
            (1+np.sqrt(5)*R+5/3.*R2)*F.exp(-np.sqrt(5)*R),
            F.expand_dims(variance, axis=-2)) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:24,代碼來源:matern.py

示例5: gen_mxfusion_model_w_mean

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def gen_mxfusion_model_w_mean(self, dtype, D, noise_var, lengthscale,
                                  variance, rand_gen=None):
        net = nn.HybridSequential(prefix='nn_')
        with net.name_scope():
            net.add(nn.Dense(D, flatten=False, activation="tanh",
                             in_units=3, dtype=dtype))
        net.initialize(mx.init.Xavier(magnitude=3))

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.mean_func = MXFusionGluonFunction(net, num_outputs=1,
                                            broadcastable=True)
        m.Y = GPRegression.define_variable(X=m.X, kernel=kernel, mean=m.mean_func(m.X), noise_var=m.noise_var, shape=(m.N, D), dtype=dtype, rand_gen=rand_gen)
        m.Y.factor.gp_log_pdf.jitter = 1e-6
        return m, net 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:20,代碼來源:gpregression_test.py

示例6: test_log_pdf_w_mean

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_log_pdf_w_mean(self):
        D, X, Y, noise_var, lengthscale, variance = self.gen_data()

        # MXFusion log-likelihood
        dtype = 'float64'
        m, net = self.gen_mxfusion_model_w_mean(
            dtype, D, noise_var, lengthscale, variance)

        mean = net(mx.nd.array(X, dtype=dtype)).asnumpy()

        # GPy log-likelihood
        m_gpy = GPy.models.GPRegression(X=X, Y=Y-mean, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), noise_var=noise_var)
        l_gpy = m_gpy.log_likelihood()

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))
        l_mf = -loss

        assert np.allclose(l_mf.asnumpy(), l_gpy) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:23,代碼來源:gpregression_test.py

示例7: test_draw_samples

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_draw_samples(self):
        D, X, Y, noise_var, lengthscale, variance = self.gen_data()
        dtype = 'float64'

        rand_gen = MockMXNetRandomGenerator(mx.nd.array(np.random.rand(20*D), dtype=dtype))

        m = self.gen_mxfusion_model(dtype, D, noise_var, lengthscale, variance, rand_gen)

        observed = [m.X]
        infr = Inference(ForwardSamplingAlgorithm(
            m, observed, num_samples=2, target_variables=[m.Y]), dtype=dtype)

        samples = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))[0].asnumpy()

        kern = RBF(3, True, name='rbf', dtype=dtype) + White(3, dtype=dtype)
        X_var = Variable(shape=(10, 3))
        gp = GaussianProcess.define_variable(X=X_var, kernel=kern, shape=(10, D), dtype=dtype, rand_gen=rand_gen).factor

        variables = {gp.X.uuid: mx.nd.expand_dims(mx.nd.array(X, dtype=dtype), axis=0), gp.add_rbf_lengthscale.uuid: mx.nd.expand_dims(mx.nd.array(lengthscale, dtype=dtype), axis=0), gp.add_rbf_variance.uuid: mx.nd.expand_dims(mx.nd.array(variance, dtype=dtype), axis=0), gp.add_white_variance.uuid: mx.nd.expand_dims(mx.nd.array(noise_var, dtype=dtype), axis=0)}
        samples_2 = gp.draw_samples(F=mx.nd, variables=variables, num_samples=2).asnumpy()

        assert np.allclose(samples, samples_2), (samples, samples_2) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:24,代碼來源:gpregression_test.py

示例8: test_draw_samples_w_mean

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_draw_samples_w_mean(self):
        D, X, Y, noise_var, lengthscale, variance = self.gen_data()
        dtype = 'float64'

        rand_gen = MockMXNetRandomGenerator(mx.nd.array(np.random.rand(20*D), dtype=dtype))

        m, net = self.gen_mxfusion_model_w_mean(dtype, D, noise_var, lengthscale, variance, rand_gen)

        observed = [m.X]
        infr = Inference(ForwardSamplingAlgorithm(
            m, observed, num_samples=2, target_variables=[m.Y]), dtype=dtype)

        samples = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))[0].asnumpy()

        kern = RBF(3, True, name='rbf', dtype=dtype) + White(3, dtype=dtype)
        X_var = Variable(shape=(10, 3))
        mean_func = MXFusionGluonFunction(net, num_outputs=1,
                                          broadcastable=True)
        mean_var = mean_func(X_var)
        gp = GaussianProcess.define_variable(X=X_var, kernel=kern, mean=mean_var, shape=(10, D), dtype=dtype, rand_gen=rand_gen).factor

        variables = {gp.X.uuid: mx.nd.expand_dims(mx.nd.array(X, dtype=dtype), axis=0), gp.add_rbf_lengthscale.uuid: mx.nd.expand_dims(mx.nd.array(lengthscale, dtype=dtype), axis=0), gp.add_rbf_variance.uuid: mx.nd.expand_dims(mx.nd.array(variance, dtype=dtype), axis=0), gp.add_white_variance.uuid: mx.nd.expand_dims(mx.nd.array(noise_var, dtype=dtype), axis=0), mean_var.uuid: mx.nd.expand_dims(net(mx.nd.array(X, dtype=dtype)), axis=0)}
        samples_2 = gp.draw_samples(F=mx.nd, variables=variables, num_samples=2).asnumpy()

        assert np.allclose(samples, samples_2), (samples, samples_2) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:27,代碼來源:gpregression_test.py

示例9: test_sampling_prediction_w_mean

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_sampling_prediction_w_mean(self):
        D, X, Y, noise_var, lengthscale, variance = self.gen_data()
        Xt = np.random.rand(20, 3)
        dtype = 'float64'
        m, net = self.gen_mxfusion_model_w_mean(
            dtype, D, noise_var, lengthscale, variance)

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype), max_iter=1)

        infr_pred = TransferInference(ModulePredictionAlgorithm(model=m, observed=[m.X], target_variables=[m.Y], num_samples=5),
                                      infr_params=infr.params)
        gp = m.Y.factor
        gp.attach_prediction_algorithms(
            targets=gp.output_names, conditionals=gp.input_names,
            algorithm=GPRegressionSamplingPrediction(
                gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]),
            alg_name='gp_predict')
        gp.gp_predict.diagonal_variance = True
        gp.gp_predict.noise_free = False
        gp.gp_predict.jitter = 1e-6

        y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy() 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:27,代碼來源:gpregression_test.py

示例10: test_prediction_print

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_prediction_print(self):
        D, X, Y, noise_var, lengthscale, variance = self.gen_data()
        Xt = np.random.rand(20, 3)

        m_gpy = GPy.models.GPRegression(X=X, Y=Y, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), noise_var=noise_var)

        dtype = 'float64'
        m = self.gen_mxfusion_model(dtype, D, noise_var, lengthscale, variance)

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)


        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))
        print = infr.print_params()
        assert (len(print) > 1) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:18,代碼來源:gpregression_test.py

示例11: test_replicate_simple_model

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_replicate_simple_model(self):
        m = mf.models.Model(verbose=False)
        m.x = mfc.Variable(shape=(2,))
        m.x_mean = mfc.Variable(value=mx.nd.array([0, 1]), shape=(2,))
        m.x_var = mfc.Variable(value=mx.nd.array([1e6]))
        d = mf.components.distributions.Normal(mean=m.x_mean, variance=m.x_var)
        m.x.set_prior(d)
        m2 = m.clone()
        # compare m and m2 components and such for exactness.
        self.assertTrue(set([v.uuid for v in m.components.values()]) ==
                        set([v.uuid for v in m2.components.values()]))
        self.assertTrue(all([v in m.components for v in m2.components]), (set(m2.components) - set(m.components)))
        self.assertTrue(all([v in m2.components for v in m.components]), (set(m.components) - set(m2.components)))
        self.assertTrue(all([m.x.shape == m2.x.shape,
                             m.x_mean.shape == m2.x_mean.shape,
                             m.x_var.shape == m2.x_var.shape])) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:18,代碼來源:factor_graph_test.py

示例12: test_compute_log_prob

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_compute_log_prob(self):
        m = Model()
        v = Variable(shape=(1,))
        m.v2 = Normal.define_variable(mean=v, variance=mx.nd.array([1]))
        m.v3 = Normal.define_variable(mean=m.v2, variance=mx.nd.array([1]), shape=(10,))
        np.random.seed(0)
        v_mx = mx.nd.array(np.random.randn(1))
        v2_mx = mx.nd.array(np.random.randn(1))
        v3_mx = mx.nd.array(np.random.randn(10))

        v_rt = add_sample_dimension(mx.nd, v_mx)
        v2_rt = add_sample_dimension(mx.nd, v2_mx)
        v3_rt = add_sample_dimension(mx.nd, v3_mx)
        variance = m.v2.factor.variance
        variance2 = m.v3.factor.variance
        variance_rt = add_sample_dimension(mx.nd, variance.constant)
        variance2_rt = add_sample_dimension(mx.nd, variance2.constant)
        log_pdf = m.log_pdf(F=mx.nd, variables={m.v2.uuid: v2_rt, m.v3.uuid:v3_rt, variance.uuid: variance_rt, variance2.uuid: variance2_rt, v.uuid: v_rt}).asscalar()

        variables = {m.v2.factor.mean.uuid: v_rt, m.v2.factor.variance.uuid: variance_rt, m.v2.factor.random_variable.uuid: v2_rt}
        log_pdf_1 = mx.nd.sum(m.v2.factor.log_pdf(F=mx.nd, variables=variables))
        variables = {m.v3.factor.mean.uuid: v2_rt, m.v3.factor.variance.uuid: variance2_rt, m.v3.factor.random_variable.uuid: v3_rt}
        log_pdf_2 = mx.nd.sum(m.v3.factor.log_pdf(F=mx.nd, variables=variables))

        assert log_pdf == (log_pdf_1 + log_pdf_2).asscalar() 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:27,代碼來源:factor_graph_test.py

示例13: test_draw_samples_with_broadcast

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_draw_samples_with_broadcast(self, dtype, a, a_is_samples, rv_shape, num_samples):
        a_mx = mx.nd.array(a, dtype=dtype)
        if not a_is_samples:
            a_mx = add_sample_dimension(mx.nd, a_mx)

        rand = np.random.gamma(shape=a, scale=np.ones(a.shape), size=(num_samples,)+rv_shape)
        draw_samples_np = rand / np.sum(rand)
        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))

        dirichlet = Dirichlet.define_variable(alpha=Variable(), shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor
        variables = {dirichlet.alpha.uuid: a_mx}
        draw_samples_rt = dirichlet.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert draw_samples_rt.shape == (5,) + rv_shape
        assert np.allclose(draw_samples_np, draw_samples_rt.asnumpy()) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:18,代碼來源:dirichlet_test.py

示例14: test_log_pdf

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_log_pdf(self, dtype, location, location_is_samples, rv, rv_is_samples, num_samples):
        is_samples_any = any([location_is_samples, rv_is_samples])
        rv_shape = rv.shape[1:] if rv_is_samples else rv.shape
        n_dim = 1 + len(rv.shape) if is_samples_any and not rv_is_samples else len(rv.shape)

        var = PointMass.define_variable(location=Variable(), shape=rv_shape, dtype=dtype).factor

        location_mx = mx.nd.array(location, dtype=dtype)
        if not location_is_samples:
            location_mx = add_sample_dimension(mx.nd, location_mx)
        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_is_samples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        variables = {var.location.uuid: location_mx, var.random_variable.uuid: rv_mx}
        log_pdf_rt = var.log_pdf(F=mx.nd, variables=variables)

        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(0, log_pdf_rt, rtol=rtol, atol=atol) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:23,代碼來源:pointmass_test.py

示例15: test_draw_samples

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import nd [as 別名]
def test_draw_samples(self, dtype, location, location_is_samples, rv_shape, num_samples):
        n_dim = 1 + len(rv_shape)

        var = PointMass.define_variable(location=Variable(), shape=rv_shape, dtype=dtype).factor
        location_mx = mx.nd.array(location, dtype=dtype)
        if not location_is_samples:
            location_mx = add_sample_dimension(mx.nd, location_mx)
        variables = {var.location.uuid: location_mx}

        rv_samples_rt = var.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(rv_samples_rt.dtype, dtype)
        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples

        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(location_mx.asnumpy()[0], rv_samples_rt.asnumpy()[0], rtol=rtol, atol=atol) 
開發者ID:amzn,項目名稱:MXFusion,代碼行數:22,代碼來源:pointmass_test.py


注:本文中的mxnet.nd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。