本文整理匯總了Python中mxnet.nd.concatenate方法的典型用法代碼示例。如果您正苦於以下問題:Python nd.concatenate方法的具體用法?Python nd.concatenate怎麽用?Python nd.concatenate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet.nd
的用法示例。
在下文中一共展示了nd.concatenate方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: bbox_transform
# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import concatenate [as 別名]
def bbox_transform(anchor, bbox):
w = anchor[:, 2] - anchor[:, 0]
h = anchor[:, 3] - anchor[:, 1]
cx = (anchor[:, 0] + anchor[:, 2]) / 2.0
cy = (anchor[:, 1] + anchor[:, 3]) / 2.0
g_w = bbox[:, 2] - bbox[:, 0]
g_h = bbox[:, 3] - bbox[:, 1]
g_cx = (bbox[:, 0] + bbox[:, 2]) / 2.0
g_cy = (bbox[:, 1] + bbox[:, 3]) / 2.0
g_w = mx.ndarray.log(g_w / w)
g_h = mx.ndarray.log(g_h / h)
g_cx = (g_cx - cx) / w
g_cy = (g_cy - cy) / h
return mx.ndarray.concatenate([
g_w.reshape((-1, 1)),
g_h.reshape((-1, 1)),
g_cx.reshape((-1, 1)),
g_cy.reshape((-1, 1))], axis=1)
示例2: bbox_inverse_transform
# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import concatenate [as 別名]
def bbox_inverse_transform(anchor, bbox):
w = anchor[:, 2] - anchor[:, 0]
h = anchor[:, 3] - anchor[:, 1]
cx = (anchor[:, 0] + anchor[:, 2]) / 2.0
cy = (anchor[:, 1] + anchor[:, 3]) / 2.0
g_w = mx.ndarray.exp(bbox[:, 0]) * w
g_h = mx.ndarray.exp(bbox[:, 1]) * h
g_cx = bbox[:, 2] * w + cx
g_cy = bbox[:, 3] * h + cy
g_x1 = g_cx - g_w / 2
g_y1 = g_cy - g_h / 2
g_x2 = g_cx + g_w / 2
g_y2 = g_cy + g_h / 2
return mx.ndarray.concatenate([
g_x1.reshape((-1, 1)),
g_y1.reshape((-1, 1)),
g_x2.reshape((-1, 1)),
g_y2.reshape((-1, 1))], axis=1)
示例3: bbox_overlaps
# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import concatenate [as 別名]
def bbox_overlaps(anchors:mx.nd.NDArray, gt:mx.nd.NDArray):
"""
Get IoU of the anchors and ground truth bounding boxes.
The shape of anchors and gt should be (N, 4) and (M, 4)
So the shape of return value is (N, M)
"""
ret = []
for i in range(gt.shape[0]):
cgt = gt[i].reshape((1, 4)).broadcast_to(anchors.shape)
# inter
x0 = nd.max(nd.stack(anchors[:,0], cgt[:,0]), axis=0)
y0 = nd.max(nd.stack(anchors[:,1], cgt[:,1]), axis=0)
x1 = nd.min(nd.stack(anchors[:,2], cgt[:,2]), axis=0)
y1 = nd.min(nd.stack(anchors[:,3], cgt[:,3]), axis=0)
inter = _get_area(nd.concatenate([x0.reshape((-1, 1)),
y0.reshape((-1, 1)),
x1.reshape((-1, 1)),
y1.reshape((-1, 1))], axis=1))
outer = _get_area(anchors) + _get_area(cgt) - inter
iou = inter / outer
ret.append(iou.reshape((-1, 1)))
ret=nd.concatenate(ret, axis=1)
return ret
示例4: sample_train_batch
# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import concatenate [as 別名]
def sample_train_batch(self):
"""Sample a training batch (data and label)."""
batch = []
labels = []
num_groups = self.batch_size // self.batch_k
# For CUB200, we use the first 100 classes for training.
sampled_classes = np.random.choice(100, num_groups, replace=False)
for i in range(num_groups):
img_fnames = np.random.choice(self.train_image_files[sampled_classes[i]],
self.batch_k, replace=False)
batch += [self.get_image(img_fname, is_train=True) for img_fname in img_fnames]
labels += [sampled_classes[i] for _ in range(self.batch_k)]
return nd.concatenate(batch, axis=0), labels
示例5: get_test_batch
# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import concatenate [as 別名]
def get_test_batch(self):
"""Sample a testing batch (data and label)."""
batch_size = self.batch_size
batch = [self.get_image(self.test_image_files[(self.test_count*batch_size + i)
% len(self.test_image_files)],
is_train=False) for i in range(batch_size)]
labels = [self.test_labels[(self.test_count*batch_size + i)
% len(self.test_image_files)] for i in range(batch_size)]
return nd.concatenate(batch, axis=0), labels
示例6: test
# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import concatenate [as 別名]
def test(ctx):
"""Test a model."""
val_data.reset()
outputs = []
labels = []
for batch in val_data:
data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
for x in data:
outputs.append(net(x)[-1])
labels += label
outputs = nd.concatenate(outputs, axis=0)[:val_data.n_test]
labels = nd.concatenate(labels, axis=0)[:val_data.n_test]
return evaluate_emb(outputs, labels)
示例7: predict
# 需要導入模塊: from mxnet import nd [as 別名]
# 或者: from mxnet.nd import concatenate [as 別名]
def predict(yolo:Yolo,x,threshold=0.5):
"""
return label ,C,location
:param yolo:
:return:
"""
assert len(x)==1,"Only One image for now"
ypre = yolo(x)
label, preds, location = deal_output(ypre, yolo.s, b=yolo.b, c=yolo.class_num)
indexs = []
for i,c in enumerate(preds[0]):
if c > threshold:
indexs.append(i)
class_names = []
C_list =[]
bos_list = []
for index in indexs:
label_index = int(index / 2)
location_offect = int(index % 2)
class_index = nd.argmax(label[0][label_index], axis=0)
C = preds[0][index]
locat = location[0][label_index][location_offect]
C_list.append(C.asscalar())
#######traslate the name
label_name = yolo.class_names
text = label_name[int(class_index.asscalar()) ]
class_names.append(text)
###traslate the locat
x, y, w, h = locat
w, h = nd.power(w, 2), nd.power(h, 2)
ceil = 1 / 4
row = int(label_index / 4)
columns = label_index % 4
x_center = columns * ceil + x
y_center = row * ceil + y
x_min, y_min, x_max, y_max = x_center - 0.5 * w, y_center - 0.5 * h, x_center + 0.5 * w, y_center + 0.5 * h
box = nd.concatenate([x_min, y_min, x_max, y_max], axis=0) * 256
bos_list.append(box.asnumpy())
return class_names,C_list,bos_list