當前位置: 首頁>>代碼示例>>Python>>正文


Python metric.Accuracy方法代碼示例

本文整理匯總了Python中mxnet.metric.Accuracy方法的典型用法代碼示例。如果您正苦於以下問題:Python metric.Accuracy方法的具體用法?Python metric.Accuracy怎麽用?Python metric.Accuracy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.metric的用法示例。


在下文中一共展示了metric.Accuracy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_metrics

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def create_metrics():
        """
        Create metrics
        :return: metrics
        """
        metrics = {'Train-Xent-Src': Loss(),
                   'Train-Xent-Tgt-l': Loss(),
                   'Train-Xent-Tgt-Ul': Loss(),
                   'Train-Aux-Src': Loss(),
                   'Train-Aux-Tgt-l': Loss(),
                   'Train-Aux-Tgt-Ul': Loss(),
                   'Train-Cons-Src': Loss(),
                   'Train-Cons-Tgt-l': Loss(),
                   'Train-Cons-Tgt-Ul': Loss(),
                   'Train-Total-Src': Loss(),
                   'Train-Total-Tgt-l': Loss(),
                   'Train-Total-Tgt-Ul': Loss(),
                   'Train-Acc-Src': Accuracy(),
                   'Train-Acc-Tgt-l': Accuracy(),
                   'Train-Acc-Tgt-Ul': Accuracy()}
        return metrics 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:23,代碼來源:training_ssda.py

示例2: gluon_random_data_run

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def gluon_random_data_run():
    mlflow.gluon.autolog()

    with mlflow.start_run() as run:
        data = DataLoader(LogsDataset(), batch_size=128, last_batch="discard")
        validation = DataLoader(LogsDataset(), batch_size=128, last_batch="discard")

        model = HybridSequential()
        model.add(Dense(64, activation="relu"))
        model.add(Dense(64, activation="relu"))
        model.add(Dense(10))
        model.initialize()
        model.hybridize()
        trainer = Trainer(model.collect_params(), "adam",
                          optimizer_params={"learning_rate": .001, "epsilon": 1e-07})
        est = estimator.Estimator(net=model, loss=SoftmaxCrossEntropyLoss(),
                                  metrics=Accuracy(), trainer=trainer)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            est.fit(data, epochs=3, val_data=validation)
    client = mlflow.tracking.MlflowClient()
    return client.get_run(run.info.run_id) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:25,代碼來源:test_gluon_autolog.py

示例3: test_autolog_ends_auto_created_run

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def test_autolog_ends_auto_created_run():
    mlflow.gluon.autolog()

    data = DataLoader(LogsDataset(), batch_size=128, last_batch="discard")

    model = HybridSequential()
    model.add(Dense(64, activation="relu"))
    model.add(Dense(64, activation="relu"))
    model.add(Dense(10))
    model.initialize()
    model.hybridize()

    trainer = Trainer(model.collect_params(), "adam",
                      optimizer_params={"learning_rate": .001, "epsilon": 1e-07})
    est = estimator.Estimator(net=model, loss=SoftmaxCrossEntropyLoss(),
                              metrics=Accuracy(), trainer=trainer)

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        est.fit(data, epochs=3)

    assert mlflow.active_run() is None 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:24,代碼來源:test_gluon_autolog.py

示例4: test_autolog_persists_manually_created_run

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def test_autolog_persists_manually_created_run():
    mlflow.gluon.autolog()

    data = DataLoader(LogsDataset(), batch_size=128, last_batch="discard")

    with mlflow.start_run() as run:

        model = HybridSequential()
        model.add(Dense(64, activation="relu"))
        model.add(Dense(64, activation="relu"))
        model.add(Dense(10))
        model.initialize()
        model.hybridize()
        trainer = Trainer(model.collect_params(), "adam",
                          optimizer_params={"learning_rate": .001, "epsilon": 1e-07})
        est = estimator.Estimator(net=model, loss=SoftmaxCrossEntropyLoss(),
                                  metrics=Accuracy(), trainer=trainer)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            est.fit(data, epochs=3)

        assert mlflow.active_run().info.run_id == run.info.run_id 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:25,代碼來源:test_gluon_autolog.py

示例5: gluon_model

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def gluon_model(model_data):
    train_data, train_label, _ = model_data
    train_data_loader = DataLoader(list(zip(train_data, train_label)),
                                   batch_size=128, last_batch="discard")
    model = HybridSequential()
    model.add(Dense(128, activation="relu"))
    model.add(Dense(64, activation="relu"))
    model.add(Dense(10))
    model.initialize()
    model.hybridize()
    trainer = Trainer(model.collect_params(), "adam",
                      optimizer_params={"learning_rate": .001, "epsilon": 1e-07})
    est = estimator.Estimator(net=model, loss=SoftmaxCrossEntropyLoss(),
                              metrics=Accuracy(), trainer=trainer)
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        est.fit(train_data_loader, epochs=3)
    return model 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:20,代碼來源:test_gluon_model_export.py

示例6: save_checkpoint

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def save_checkpoint(epoch, top1, best_acc):
    if opt.save_frequency and (epoch + 1) % opt.save_frequency == 0:
        fname = os.path.join(opt.prefix, '%s_%d_acc_%.4f.params' % (opt.model, epoch, top1))
        net.save_parameters(fname)
        logger.info('[Epoch %d] Saving checkpoint to %s with Accuracy: %.4f', epoch, fname, top1)
    if top1 > best_acc[0]:
        best_acc[0] = top1
        fname = os.path.join(opt.prefix, '%s_best.params' % (opt.model))
        net.save_parameters(fname)
        logger.info('[Epoch %d] Saving checkpoint to %s with Accuracy: %.4f', epoch, fname, top1) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:12,代碼來源:image_classification.py

示例7: eval_acc

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def eval_acc(inference, val_loader, ctx, return_meta=False):
    mtc_acc = Accuracy()
    mtc_acc.reset()

    feature_nest, y_nest, y_hat_nest = [], [], []
    for X, y in val_loader:
        X = X.as_in_context(ctx[0])
        y = y.as_in_context(ctx[0])
        with autograd.record(train_mode=False):
            y_hat, features = inference(X)

        # update metric
        mtc_acc.update([y], [y_hat])

        if return_meta:
            y_nest.extend(y.asnumpy())
            feature_nest.extend(features.asnumpy())
            y_hat_nest.extend(y_hat.asnumpy())

    feature_nest = np.array(feature_nest)
    y_nest = np.array(y_nest)
    y_hat_nest = np.array(y_hat_nest)

    if return_meta:
        return mtc_acc.get()[1], y_nest, y_hat_nest, feature_nest

    return mtc_acc.get()[1] 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:29,代碼來源:validating.py

示例8: create_metrics

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def create_metrics():
        """
        Create metrics
        :return: metrics
        """
        metrics = {'Train-Xent-Src': Loss(),
                   'Train-Xent-Tgt': Loss(),
                   'Train-Acc-Src': Accuracy(),
                   'Train-Acc-Tgt': Accuracy(),
                   'Train-Aux-Src': Loss(),
                   'Train-Aux-Tgt': Loss(),
                   'Train-Total-Src': Loss(),
                   'Train-Total-Tgt': Loss()}
        return metrics 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:16,代碼來源:training_sda.py

示例9: validate

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def validate(net, val_data, ctx, loss, plot=False):
    metric = mtc.Accuracy()
    val_loss = 0
    ebs = []
    lbs = []
    for i, batch in enumerate(val_data):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False)
        labels = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False)

        ots = [net(X) for X in data]
        embedds = [ot[0] for ot in ots]
        outputs = [ot[1] for ot in ots]

        losses = [loss(yhat, y) for yhat, y in zip(outputs, labels)]
        metric.update(labels, outputs)
        val_loss += sum([l.mean().asscalar() for l in losses]) / len(losses)
        if plot:
            for es, ls in zip(embedds, labels):
                assert len(es) == len(ls)
                for idx in range(len(es)):
                    ebs.append(es[idx].asnumpy())
                    lbs.append(ls[idx].asscalar())
    if plot:
        ebs = np.vstack(ebs)
        lbs = np.hstack(lbs)

    _, val_acc = metric.get()
    return val_acc, val_loss / len(val_data), ebs, lbs 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:30,代碼來源:train_mnist_arcloss.py

示例10: validate

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def validate(net, val_data, ctx, loss, plot=False):
    metric = mtc.Accuracy()
    val_loss = 0
    ebs = []
    lbs = []
    for i, batch in enumerate(val_data):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False)
        labels = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False)

        ots = [net(X) for X in data]
        embedds = [ot[0] for ot in ots]
        outputs = [ot[1] for ot in ots]

        losses = [loss(yhat, y, emb) for yhat, y, emb in zip(outputs, labels, embedds)]
        metric.update(labels, outputs)
        val_loss += sum([l.mean().asscalar() for l in losses]) / len(losses)
        if plot:
            for es, ls in zip(embedds, labels):
                assert len(es) == len(ls)
                for idx in range(len(es)):
                    ebs.append(es[idx].asnumpy())
                    lbs.append(ls[idx].asscalar())
    if plot:
        ebs = np.vstack(ebs)
        lbs = np.hstack(lbs)

    _, val_acc = metric.get()
    return val_acc, val_loss / len(val_data), ebs, lbs 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:30,代碼來源:train_mnist_ringloss.py

示例11: validate

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def validate(net, val_data, ctx, loss, plot=False):
    metric = mtc.Accuracy()
    val_loss = 0
    ebs = []
    lbs = []
    for i, batch in enumerate(val_data):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False)
        labels = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False)

        embedds = [net(X) for X in data]
        ots = [loss(emb, y) for emb, y in zip(embedds, labels)]
        losses = [ot[0] for ot in ots]
        outputs = [ot[1] for ot in ots]

        metric.update(labels, outputs)
        val_loss += sum([l.mean().asscalar() for l in losses]) / len(losses)
        if plot:
            for es, ls in zip(embedds, labels):
                assert len(es) == len(ls)
                for idx in range(len(es)):
                    ebs.append(es[idx].asnumpy())
                    lbs.append(ls[idx].asscalar())
    if plot:
        ebs = np.vstack(ebs)
        lbs = np.hstack(lbs)

    _, val_acc = metric.get()
    return val_acc, val_loss / len(val_data), ebs, lbs 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:30,代碼來源:train_mnist_lgmloss.py

示例12: validate

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def validate(net, val_data, ctx, loss, plot=False):
    metric = mtc.Accuracy()
    val_loss = 0
    ebs = []
    lbs = []
    for i, batch in enumerate(val_data):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False)
        labels = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False)

        ots = [net(X) for X in data]
        embedds = [ot[0] for ot in ots]
        outputs = [ot[1] for ot in ots]
        losses = [loss(yhat, y, emb) for yhat, y, emb in zip(outputs, labels, embedds)]

        metric.update(labels, outputs)
        val_loss += sum([l.mean().asscalar() for l in losses]) / len(losses)
        if plot:
            for es, ls in zip(embedds, labels):
                assert len(es) == len(ls)
                for idx in range(len(es)):
                    ebs.append(es[idx].asnumpy())
                    lbs.append(ls[idx].asscalar())
    if plot:
        ebs = np.vstack(ebs)
        lbs = np.hstack(lbs)

    _, val_acc = metric.get()
    return val_acc, val_loss / len(val_data), ebs, lbs 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:30,代碼來源:train_mnist_centerloss.py

示例13: __init__

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def __init__(self):
        is_pair = False
        class_labels = ['0', '1']
        self.metric = Accuracy()
        super(ToySSTTask, self).__init__(class_labels, self.metric, is_pair) 
開發者ID:awslabs,項目名稱:autogluon,代碼行數:7,代碼來源:dataset.py

示例14: save_checkpoint

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def save_checkpoint(epoch, top1, best_acc):
    if opt.save_frequency and (epoch + 1) % opt.save_frequency == 0:
        fname = os.path.join(opt.prefix, '%s_%d_acc_%.4f.params' % (opt.model, epoch, top1))
        net.save_params(fname)
        logger.info('[Epoch %d] Saving checkpoint to %s with Accuracy: %.4f', epoch, fname, top1)
    if top1 > best_acc[0]:
        best_acc[0] = top1
        fname = os.path.join(opt.prefix, '%s_best.params' % (opt.model))
        net.save_params(fname)
        logger.info('[Epoch %d] Saving checkpoint to %s with Accuracy: %.4f', epoch, fname, top1) 
開發者ID:mahyarnajibi,項目名稱:SNIPER-mxnet,代碼行數:12,代碼來源:image_classification.py

示例15: eval

# 需要導入模塊: from mxnet import metric [as 別名]
# 或者: from mxnet.metric import Accuracy [as 別名]
def eval(self, inference, val_loader, log=True, target=True, epoch=True):
        """
        Evaluate the model
        :param inference: network
        :param val_loader: data loader
        :param log: log flag
        :param target: target flag for updating the record and log
        :param epoch: epoch flag for updating the record and log
        :return:
        """
        mtc_acc = Accuracy()
        mtc_acc.reset()
        # val_loader.reset()

        feature_nest, y_nest, y_hat_nest = [], [], []
        for X, Y in val_loader:
            X_lst = split_and_load(X, self.args.ctx, even_split=False)
            Y_lst = split_and_load(Y, self.args.ctx, even_split=False)

            for x, y in zip(X_lst, Y_lst):
                y_hat, features = inference(x)
                # update metric
                mtc_acc.update([y], [y_hat])

                y_nest.extend(y.asnumpy())
                feature_nest.extend(features.asnumpy())
                y_hat_nest.extend(y_hat.asnumpy())

        feature_nest = np.array(feature_nest)
        y_nest = np.array(y_nest).astype(int)
        y_hat_nest = np.array(y_hat_nest)

        if log:
            target_key = 'Tgt' if target else 'Src'
            epoch_key = 'Epoch' if epoch else 'Iter'
            record = self.cur_epoch if epoch else self.cur_iter

            if mtc_acc.get()[1] > self.records[epoch_key]['%s-Acc' % target_key]:
                if target:
                    self.records[epoch_key][epoch_key] = record
                self.records[epoch_key]['%s-Acc' % target_key] = mtc_acc.get()[1]
                self.records[epoch_key]['%s-label' % target_key] = y_nest
                self.records[epoch_key]['%s-preds' % target_key] = y_hat_nest
                self.records[epoch_key]['%s-features' % target_key] = feature_nest

                self.save_params(inference, 0, epoch_key)

            self.logger.update_scalar('%s [%d]: Eval-Acc-%s' % (epoch_key, record, target_key), mtc_acc.get()[1])
            if self.sw:
                self.sw.add_scalar('Acc/Eval-%s-Acc-%s' % (epoch, target_key), mtc_acc.get()[1], global_step=record)

        return mtc_acc.get()[1], y_nest, y_hat_nest, feature_nest 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:54,代碼來源:training_sda.py


注:本文中的mxnet.metric.Accuracy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。