本文整理匯總了Python中mxnet.io.DataDesc方法的典型用法代碼示例。如果您正苦於以下問題:Python io.DataDesc方法的具體用法?Python io.DataDesc怎麽用?Python io.DataDesc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet.io
的用法示例。
在下文中一共展示了io.DataDesc方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: next
# 需要導入模塊: from mxnet import io [as 別名]
# 或者: from mxnet.io import DataDesc [as 別名]
def next(self):
"""Returns the next batch of data."""
if self.curr_idx == len(self.idx):
raise StopIteration
#i = batches index, j = starting record
i, j = self.idx[self.curr_idx]
self.curr_idx += 1
indices = self.ndindex[i][j:j + self.batch_size]
sentences = self.ndsent[i][j:j + self.batch_size]
characters = self.ndchar[i][j:j + self.batch_size]
label = self.ndlabel[i][j:j + self.batch_size]
return DataBatch([sentences, characters], [label], pad=0, index = indices, bucket_key=self.buckets[i],
provide_data=[DataDesc(name=self.data_names[0], shape=sentences.shape, layout=self.layout),
DataDesc(name=self.data_names[1], shape=characters.shape, layout=self.layout)],
provide_label=[DataDesc(name=self.label_name, shape=label.shape, layout=self.layout)])
示例2: create_batch
# 需要導入模塊: from mxnet import io [as 別名]
# 或者: from mxnet.io import DataDesc [as 別名]
def create_batch(self, frame):
"""
:param frame: an (w,h,channels) numpy array (image)
:return: DataBatch of (1,channels,data_shape,data_shape)
"""
frame_resize = mx.nd.array(cv2.resize(frame, (self.data_shape[0], self.data_shape[1])))
#frame_resize = mx.img.imresize(frame, self.data_shape[0], self.data_shape[1], cv2.INTER_LINEAR)
# Change dimensions from (w,h,channels) to (channels, w, h)
frame_t = mx.nd.transpose(frame_resize, axes=(2,0,1))
frame_norm = frame_t - self.mean_pixels_nd
# Add dimension for batch, results in (1,channels,w,h)
batch_frame = [mx.nd.expand_dims(frame_norm, axis=0)]
batch_shape = [DataDesc('data', batch_frame[0].shape)]
batch = DataBatch(data=batch_frame, provide_data=batch_shape)
return batch
示例3: provide_data
# 需要導入模塊: from mxnet import io [as 別名]
# 或者: from mxnet.io import DataDesc [as 別名]
def provide_data(self):
"""The name and shape of data provided by this iterator"""
if self.rename_data is None:
return sum([i.provide_data for i in self.iters], [])
else:
return sum([[
DataDesc(r[x.name], x.shape, x.dtype)
if isinstance(x, DataDesc) else DataDesc(*x)
for x in i.provide_data
] for r, i in zip(self.rename_data, self.iters)], [])
示例4: provide_label
# 需要導入模塊: from mxnet import io [as 別名]
# 或者: from mxnet.io import DataDesc [as 別名]
def provide_label(self):
"""The name and shape of label provided by this iterator"""
if self.rename_label is None:
return sum([i.provide_label for i in self.iters], [])
else:
return sum([[
DataDesc(r[x.name], x.shape, x.dtype)
if isinstance(x, DataDesc) else DataDesc(*x)
for x in i.provide_label
] for r, i in zip(self.rename_label, self.iters)], [])
示例5: model_fn
# 需要導入模塊: from mxnet import io [as 別名]
# 或者: from mxnet.io import DataDesc [as 別名]
def model_fn(path_to_model_files):
from mxnet.io import DataDesc
loaded_symbol = mx.symbol.load(os.path.join(path_to_model_files, "symbol"))
created_module = mx.mod.Module(symbol=loaded_symbol)
created_module.bind([DataDesc("data", (1, 1, 28, 28))])
created_module.load_params(os.path.join(path_to_model_files, "params"))
return created_module
# --- Option 1 - provide just 1 entry point for end2end prediction ---
# if this function is specified, no other overwriting described in Option 2 will have effect
# returns serialized data and content type it has used
示例6: provide_data
# 需要導入模塊: from mxnet import io [as 別名]
# 或者: from mxnet.io import DataDesc [as 別名]
def provide_data(self):
"""The name and shape of data provided by this iterator"""
if self.rename_data is None:
return sum([i.provide_data for i in self.iters], [])
else:
return sum(
[
[
DataDesc(r[x.name], x.shape, x.dtype) if isinstance(x, DataDesc) else DataDesc(*x)
for x in i.provide_data
]
for r, i in zip(self.rename_data, self.iters)
],
[],
)
示例7: provide_label
# 需要導入模塊: from mxnet import io [as 別名]
# 或者: from mxnet.io import DataDesc [as 別名]
def provide_label(self):
"""The name and shape of label provided by this iterator"""
if self.rename_label is None:
return sum([i.provide_label for i in self.iters], [])
else:
return sum(
[
[
DataDesc(r[x.name], x.shape, x.dtype) if isinstance(x, DataDesc) else DataDesc(*x)
for x in i.provide_label
]
for r, i in zip(self.rename_label, self.iters)
],
[],
)