當前位置: 首頁>>代碼示例>>Python>>正文


Python mxnet.gpu方法代碼示例

本文整理匯總了Python中mxnet.gpu方法的典型用法代碼示例。如果您正苦於以下問題:Python mxnet.gpu方法的具體用法?Python mxnet.gpu怎麽用?Python mxnet.gpu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet的用法示例。


在下文中一共展示了mxnet.gpu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def main():
    """Module main execution"""
    # Initialization variables - update to change your model and execution context
    model_prefix = "FCN8s_VGG16"
    epoch = 19

    # By default, MXNet will run on the CPU. Change to ctx = mx.gpu() to run on GPU.
    ctx = mx.cpu()

    fcnxs, fcnxs_args, fcnxs_auxs = mx.model.load_checkpoint(model_prefix, epoch)
    fcnxs_args["data"] = mx.nd.array(get_data(args.input), ctx)
    data_shape = fcnxs_args["data"].shape
    label_shape = (1, data_shape[2]*data_shape[3])
    fcnxs_args["softmax_label"] = mx.nd.empty(label_shape, ctx)
    exector = fcnxs.bind(ctx, fcnxs_args, args_grad=None, grad_req="null", aux_states=fcnxs_args)
    exector.forward(is_train=False)
    output = exector.outputs[0]
    out_img = np.uint8(np.squeeze(output.asnumpy().argmax(axis=1)))
    out_img = Image.fromarray(out_img)
    out_img.putpalette(get_palette())
    out_img.save(args.output) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:image_segmentaion.py

示例2: __init__

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def __init__(self, args):
        # Default training settings
        self.ctx = mx.gpu(0) if args.gpu else mx.cpu()
        self.init_func = mx.init.Xavier(rnd_type='uniform', factor_type="in",
                                        magnitude=1)
        self.learning_rate = 1e-3
        self.update_rule = "adam"
        self.grad_clip = True
        self.clip_magnitude = 40

        # Default model settings
        self.hidden_size = 200
        self.gamma = 0.99
        self.lambda_ = 1.0
        self.vf_wt = 0.5        # Weight of value function term in the loss
        self.entropy_wt = 0.01  # Weight of entropy term in the loss

        self.num_envs = 16
        self.t_max = 50

        # Override defaults with values from `args`.
        for arg in self.__dict__:
            if arg in args.__dict__:
                self.__setattr__(arg, args.__dict__[arg]) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:26,代碼來源:config.py

示例3: main

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def main():
    # testing configurations
    cell_types = [gluon.rnn.RNNCell,
                  gluon.rnn.GRUCell,
                  gluon.rnn.LSTMCell]
    ctxs = [mx.cpu(0)]
    if args.gpu:
        ctxs = ctxs + [mx.gpu(i) for i in _get_gpus()]
    seq_lens = [100]
    batch_sizes = [1, 32]
    hidden_dims = [512]
    print("--------------------------------------")
    print("Benchmarking", args.benchmark)
    for cell_type, ctx, seq_len, batch_size, hidden_dim in product(  \
        cell_types, ctxs, seq_lens, batch_sizes, hidden_dims):
        print("--------------------------------------")
        print("cell: %s  ctx: %s  length: %d  batch size: %d dim: %d" % \
              (cell_type.__name__, str(ctx), seq_len, batch_size, hidden_dim))
        run_benchmark(cell_type, ctx, seq_len, batch_size, hidden_dim) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:rnn.py

示例4: test_sync_push_pull

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_sync_push_pull():
    kv, my_rank, nworker = init_kv()
    num_gpus = 2
    def check_default_keys(kv, my_rank, nworker):
        nrepeat = 3
        # checks pull after push in loop, because behavior during
        # consecutive pushes doesn't offer any guarantees
        for i in range(nrepeat):
            scale = my_rank + 1
            kv.push('3', [mx.nd.ones(shape, ctx=mx.gpu(j)) * scale for j in range(num_gpus)])
            kv.push('99', [mx.nd.ones(big_shape, ctx=mx.gpu(j)) * scale for j in range(num_gpus)])
            num = (nworker + 1) * nworker * rate * num_gpus / 2 * (i + 1) + 1
            val = mx.nd.zeros(shape)
            kv.pull('3', out=val)
            check_diff_to_scalar(val, num)
            val2 = mx.nd.zeros(big_shape)
            kv.pull('99', out=val2)
            check_diff_to_scalar(val2, num)

    check_default_keys(kv, my_rank, nworker)
    print('worker ' + str(my_rank) + ' is done') 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:dist_device_sync_kvstore.py

示例5: test_kvstore

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_kvstore(kv_type, stype):
    print(kv_type)
    kv = mx.kv.create(kv_type)
    kv.set_optimizer(mx.optimizer.create('test', rescale_grad=lr))
    for k, s in zip(keys, shapes):
        kv.init(k, mx.nd.zeros(s))

    res = [np.zeros(s) for s in shapes]
    for i in range(nrepeat):
        for j in range(len(keys)):
            kv.push(keys[j], [mx.nd.array(
                data[i][j][g], mx.gpu(g)).tostype(stype) for g in range(nworker)])

        res = [a + b * lr for a, b in zip(res, [sum(d) for d in data[i]])]
        for j in range(len(keys)):
            out = [mx.nd.zeros(shapes[j], mx.gpu(g)) for g in range(nworker)]
            kv.pull(keys[j], out=out)
            err = [np.sum(np.abs(o.asnumpy() - res[j])) for o in out]
            err = sum(err) / np.sum(np.abs(res[j]))
            assert(err < 1e-6), (err, shapes[j]) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:test_kvstore.py

示例6: test_group_kvstore

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_group_kvstore(kv_type, stype):
    print(kv_type)
    kv = mx.kv.create(kv_type)
    kv.set_optimizer(mx.optimizer.create('test', rescale_grad=lr))
    kv.init(keys, [mx.nd.zeros(s) for s in shapes])
    res = [np.zeros(s) for s in shapes]
    out = [[mx.nd.zeros(s, mx.gpu(g)) for g in range(nworker)] for s in shapes]
    for i in range(nrepeat):
        kv.push(keys, [[
            mx.nd.array(data[i][j][g], mx.gpu(g)).tostype(stype) for g in range(nworker)]
                       for j in range(len(keys))])

        kv.pull(keys, out=out)
        res = [a + b * lr for a, b in zip(res, [sum(d) for d in data[i]])]
        for a, b in zip(res, out):
            err = [np.sum(np.abs(o.asnumpy() - a)) for o in b]
            err = sum(err) / np.sum(np.abs(a))
            assert(err < 1e-6), (err, a.shape) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:test_kvstore.py

示例7: test_sync_init

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_sync_init(gpu_tests=False):
    def get_dtype(idx, cur_keys):
        if idx < len(cur_keys)/2:
            dtype = 'float32'
        else:
            dtype = 'float16'
        return dtype

    def check_init(kv, cur_keys, cur_shape, device=False):
        ctx = mx.gpu(0) if device else mx.cpu()
        val = [mx.nd.zeros(cur_shape, ctx=ctx, dtype=get_dtype(i, cur_keys)) for i in range(len(cur_keys))]
        for i in range(len(cur_keys)):
            expected = i
            kv.init(cur_keys[i], [mx.nd.ones(cur_shape, ctx=ctx, dtype=get_dtype(i, cur_keys)) * i])
            kv.pull(cur_keys[i], out=val[i])
            check_diff(val[i], expected)
    check_init(kv, init_test_keys, shape)
    check_init(kv, init_test_keys_big, big_shape)
    if gpu_tests:
        check_init(kv, init_test_keys_device, shape, device=True)
        check_init(kv, init_test_keys_device_big, big_shape, device=True)
    print('worker ' + str(kv.rank) + ' is initialized') 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:dist_sync_kvstore.py

示例8: check_rnn_layer

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def check_rnn_layer(layer):
    layer.collect_params().initialize(ctx=[mx.cpu(0), mx.gpu(0)])
    with mx.gpu(0):
        x = mx.nd.ones((10, 16, 30))
        states = layer.begin_state(16)
        go, gs = layer(x, states)

    with mx.cpu(0):
        x = mx.nd.ones((10, 16, 30))
        states = layer.begin_state(16)
        co, cs = layer(x, states)

    # atol of 1e-6 required, as exposed by seed 2124685726
    assert_almost_equal(go.asnumpy(), co.asnumpy(), rtol=1e-2, atol=1e-6)
    for g, c in zip(gs, cs):
        assert_almost_equal(g.asnumpy(), c.asnumpy(), rtol=1e-2, atol=1e-6) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_gluon_gpu.py

示例9: check_rnn_layer_w_rand_inputs

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def check_rnn_layer_w_rand_inputs(layer):
    layer.collect_params().initialize(ctx=[mx.cpu(0), mx.gpu(0)])
    x = mx.nd.uniform(shape=(10, 16, 30))
    with mx.gpu(0):
        x = x.copyto(mx.gpu(0))
        states = layer.begin_state(16)
        go, gs = layer(x, states)

    with mx.cpu(0):
        x = x.copyto(mx.cpu(0))
        states = layer.begin_state(16)
        co, cs = layer(x, states)

    assert_almost_equal(go.asnumpy(), co.asnumpy(), rtol=1e-2, atol=1e-6)
    for g, c in zip(gs, cs):
        assert_almost_equal(g.asnumpy(), c.asnumpy(), rtol=1e-2, atol=1e-6) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_gluon_gpu.py

示例10: test_deconvolution_large_c

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_deconvolution_large_c():
    problematic_c = 64 * 1024
    # The deconvolution accumulates many values, so set large tolerances.
    tol = {np.dtype(np.float32): 1,
           np.dtype(np.float64): 1}
    def test_1D_with_width(width, grad_req):
        ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (1, 8, width), 'type_dict': {'deconv_data': np.float32}},
                    {'ctx': mx.gpu(0), 'deconv_data': (1, 8, width), 'type_dict': {'deconv_data': np.float64}}]
        sym = mx.sym.Deconvolution(layout='NCW', num_filter=problematic_c, kernel=(2,), name='deconv')
        check_consistency([sym, sym], ctx_list, tol=tol, grad_req=grad_req)

    def test_2D_with_width(width, grad_req):
        ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (1, 8, 2, width), 'type_dict': {'deconv_data': np.float32}},
                    {'ctx': mx.gpu(0), 'deconv_data': (1, 8, 2, width), 'type_dict': {'deconv_data': np.float64}}]
        sym = mx.sym.Deconvolution(layout='NCHW', num_filter=problematic_c, kernel=(2,2), name='deconv')
        check_consistency([sym, sym], ctx_list, tol=tol, grad_req=grad_req)

    # Run with different data tensor shapes to run cudnnFind() multiple times.
    # First, populate algo and op caches with models that always use cudnnFind() (req == 'write').
    # Then run models that must avoid cached cudnnFind() results in some cases (req == 'add').
    widths = [4, 16, 64]
    for req in ['write', 'add']:
        for width in widths:
            test_1D_with_width(width, req)
            test_2D_with_width(width, req) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:test_operator_gpu.py

示例11: test_convolution_versions

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_convolution_versions():
    # 2D convolution NCHW
    ctx_list = [{'ctx': mx.cpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}},
                {'ctx': mx.gpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}},
                {'ctx': mx.gpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}},
                {'ctx': mx.cpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}},
                {'ctx': mx.gpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}}]
    conv_v1_cpu = mx.sym.Convolution_v1(num_filter=3, kernel=(3,3), pad=(1,1), name='conv')
    conv_v1_gpu = mx.sym.Convolution_v1(num_filter=3, kernel=(3,3), pad=(1,1), cudnn_off=True, name='conv')
    conv_cudnn = mx.sym.Convolution(num_filter=3, kernel=(3,3), pad=(1,1), name='conv')
    conv_cpu = mx.sym.Convolution(num_filter=3, kernel=(3,3), pad=(1,1), name='conv')
    conv_gpu = mx.sym.Convolution(num_filter=3, kernel=(3,3), pad=(1,1), cudnn_off=True, name='conv')
    syms = [conv_v1_cpu, conv_v1_gpu, conv_cudnn, conv_cpu, conv_gpu]
    check_consistency(syms, ctx_list)

    # 3D convolution NCDHW
    ctx_list = [{'ctx': mx.gpu(0), 'conv_data': (2, 2, 5, 7, 7), 'type_dict': {'conv_data': np.float32}},
                {'ctx': mx.cpu(0), 'conv_data': (2, 2, 5, 7, 7), 'type_dict': {'conv_data': np.float32}},
                {'ctx': mx.gpu(0), 'conv_data': (2, 2, 5, 7, 7), 'type_dict': {'conv_data': np.float32}}]
    conv_cudnn = mx.sym.Convolution(num_filter=3, kernel=(2,3,3), pad=(1,1,1), name='conv')
    conv_cpu = mx.sym.Convolution(num_filter=3, kernel=(2,3,3), pad=(1,1,1), name='conv')
    conv_gpu = mx.sym.Convolution(num_filter=3, kernel=(2,3,3), pad=(1,1,1), cudnn_off=True, name='conv')
    syms = [conv_cudnn, conv_cpu, conv_gpu]
    check_consistency(syms, ctx_list) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:26,代碼來源:test_operator_gpu.py

示例12: test_bilinear_sampler_with_type

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_bilinear_sampler_with_type():
    data = mx.sym.Variable('data')
    grid = mx.sym.Variable('grid')
    sym = mx.sym.BilinearSampler(data=data, grid=grid)
    ctx_list = [{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float64}},
                {'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float32}},
                {'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float16}},
                {'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float64}},
                {'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float32}}]
    check_consistency(sym, ctx_list)
    check_consistency(sym, ctx_list, grad_req="add") 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_operator_gpu.py

示例13: test_spatial_transformer_with_type

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_spatial_transformer_with_type():
    data = mx.sym.Variable('data')
    loc = mx.sym.Flatten(data)
    loc = mx.sym.FullyConnected(data=loc, num_hidden=10)
    loc = mx.sym.Activation(data=loc, act_type='relu')
    loc = mx.sym.FullyConnected(data=loc, num_hidden=6)
    sym = mx.sym.SpatialTransformer(data=data, loc=loc, target_shape=(10, 10),
                                    transform_type="affine", sampler_type="bilinear", cudnn_off=True)
    ctx_list = [{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'type_dict': {'data': np.float64}},
                {'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'type_dict': {'data': np.float64}}]
    check_consistency(sym, ctx_list)
    check_consistency(sym, ctx_list, grad_req="add")
    sym = mx.sym.SpatialTransformer(data=data, loc=loc, target_shape=(10, 10),
                                    transform_type="affine", sampler_type="bilinear", cudnn_off=False)
    check_consistency(sym, ctx_list)
    check_consistency(sym, ctx_list, grad_req="add") 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_operator_gpu.py

示例14: test_pooling_with_type2

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_pooling_with_type2():
    ctx_list = [{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}},
                {'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}},
                {'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float16}},
                {'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}},
                {'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}}]

    sym = mx.sym.Pooling(name='pool', kernel=(3,3), stride=(2,2), pool_type='max')
    check_consistency(sym, ctx_list, rand_type=np.float16)

    sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='avg')
    check_consistency(sym, ctx_list)

    sym = mx.sym.Pooling(name='pool', kernel=(5,5), pad=(2,2), pool_type='max')
    check_consistency(sym, ctx_list, rand_type=np.float16)

    sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='sum')
    check_consistency(sym, ctx_list) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:test_operator_gpu.py

示例15: test_elementwisesum_with_type

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gpu [as 別名]
def test_elementwisesum_with_type():
    dev_types = [[mx.gpu(0), [np.float64, np.float32, np.float16]],
                 [mx.cpu(0), [np.float64, np.float32]] ]
    for num_args in range(1, 6):
        ews_arg_shape = {}
        for i in range(num_args):
            ews_arg_shape['ews_arg'+str(i)] = (2, 10)
        sym = mx.sym.ElementWiseSum(name='ews', num_args=num_args)
        ctx_list = []
        for dev, types in dev_types:
            for dtype in types:
                ews_arg_dtype = {'type_dict':{}}
                for i in range(num_args):
                    ews_arg_dtype['type_dict']['ews_arg'+str(i)] = dtype
                ctx_elem = {'ctx': dev}
                ctx_elem.update(ews_arg_shape)
                ctx_elem.update(ews_arg_dtype)
                ctx_list.append(ctx_elem)
    check_consistency(sym, ctx_list) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:test_operator_gpu.py


注:本文中的mxnet.gpu方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。