本文整理匯總了Python中mxnet.gluon.nn.LeakyReLU方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.LeakyReLU方法的具體用法?Python nn.LeakyReLU怎麽用?Python nn.LeakyReLU使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet.gluon.nn
的用法示例。
在下文中一共展示了nn.LeakyReLU方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_netD
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def get_netD():
# build the discriminator
netD = nn.Sequential()
with netD.name_scope():
# input is (nc) x 64 x 64
netD.add(nn.Conv2D(ndf, 4, 2, 1, use_bias=False))
netD.add(nn.LeakyReLU(0.2))
# state size. (ndf) x 32 x 32
netD.add(nn.Conv2D(ndf * 2, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())
netD.add(nn.LeakyReLU(0.2))
# state size. (ndf*2) x 16 x 16
netD.add(nn.Conv2D(ndf * 4, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())
netD.add(nn.LeakyReLU(0.2))
# state size. (ndf*4) x 8 x 8
netD.add(nn.Conv2D(ndf * 8, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())
netD.add(nn.LeakyReLU(0.2))
# state size. (ndf*8) x 4 x 4
netD.add(nn.Conv2D(2, 4, 1, 0, use_bias=False))
# state size. 2 x 1 x 1
return netD
示例2: test_lambda
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def test_lambda():
net1 = mx.gluon.nn.HybridSequential()
net1.add(nn.Activation('tanh'),
nn.LeakyReLU(0.1))
net2 = mx.gluon.nn.HybridSequential()
op3 = lambda F, x, *args: F.LeakyReLU(x, *args, slope=0.1)
net2.add(nn.HybridLambda('tanh'),
nn.HybridLambda(op3))
op4 = lambda x: mx.nd.LeakyReLU(x, slope=0.1)
net3 = mx.gluon.nn.Sequential()
net3.add(nn.Lambda('tanh'),
nn.Lambda(op4))
input_data = mx.nd.random.uniform(shape=(2, 3, 5, 7))
out1, out2, out3 = net1(input_data), net2(input_data), net3(input_data)
assert_almost_equal(out1.asnumpy(), out2.asnumpy(), rtol=1e-3, atol=1e-3)
assert_almost_equal(out1.asnumpy(), out3.asnumpy(), rtol=1e-3, atol=1e-3)
示例3: get_activation
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def get_activation(act):
"""Get the activation based on the act string
Parameters
----------
act: str or HybridBlock
Returns
-------
ret: HybridBlock
"""
if act is None:
return lambda x: x
if isinstance(act, str):
if act == 'leaky':
return nn.LeakyReLU(0.1)
elif act in ['relu', 'sigmoid', 'tanh', 'softrelu', 'softsign']:
return nn.Activation(act)
else:
raise NotImplementedError
else:
return act
示例4: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self, act_func, **kwargs):
super(Activation, self).__init__(**kwargs)
if act_func == "relu":
self.act = nn.Activation('relu')
elif act_func == "relu6":
self.act = ReLU6()
elif act_func == "hard_sigmoid":
self.act = HardSigmoid()
elif act_func == "swish":
self.act = nn.Swish()
elif act_func == "hard_swish":
self.act = HardSwish()
elif act_func == "leaky":
self.act = nn.LeakyReLU(alpha=0.375)
else:
raise NotImplementedError
示例5: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self,
in_channels,
out_channels,
bn_use_global_stats,
alpha,
**kwargs):
super(DarkUnit, self).__init__(**kwargs)
assert (out_channels % 2 == 0)
mid_channels = out_channels // 2
with self.name_scope():
self.conv1 = conv1x1_block(
in_channels=in_channels,
out_channels=mid_channels,
bn_use_global_stats=bn_use_global_stats,
activation=nn.LeakyReLU(alpha=alpha))
self.conv2 = conv3x3_block(
in_channels=mid_channels,
out_channels=out_channels,
bn_use_global_stats=bn_use_global_stats,
activation=nn.LeakyReLU(alpha=alpha))
示例6: test_lambda
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def test_lambda():
net1 = mx.gluon.nn.HybridSequential()
net1.add(nn.Activation('tanh'),
nn.LeakyReLU(0.1))
net2 = mx.gluon.nn.HybridSequential()
op3 = lambda F, x, *args: F.LeakyReLU(x, *args, slope=0.1)
net2.add(nn.HybridLambda('tanh'),
nn.HybridLambda(op3))
op4 = lambda x: mx.nd.LeakyReLU(x, slope=0.1)
net3 = mx.gluon.nn.Sequential()
net3.add(nn.Lambda('tanh'),
nn.Lambda(op4))
input_data = mx.nd.random.uniform(shape=(2, 3, 5, 7))
out1, out2, out3 = net1(input_data), net2(input_data), net3(input_data)
assert_almost_equal(out1.asnumpy(), out2.asnumpy(), rtol=1e-3)
assert_almost_equal(out1.asnumpy(), out3.asnumpy(), rtol=1e-3)
示例7: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self, n_classes):
super(EdgeSpatial, self).__init__()
self.mlp = nn.Sequential()
self.mlp.add(nn.Dense(64))
self.mlp.add(nn.LeakyReLU(0.1))
self.mlp.add(nn.Dense(64))
self.mlp.add(nn.LeakyReLU(0.1))
self.mlp.add(nn.Dense(n_classes))
示例8: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self,filter_num,kernel_size=4,stride=2,padding=1):
super(ConvBlock,self).__init__()
self.model = nn.HybridSequential()
with self.name_scope():
self.model.add(
nn.Conv2D(filter_num, kernel_size, stride,padding,use_bias=False),
nn.BatchNorm(),
nn.LeakyReLU(0.2),
)
示例9: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0):
super(DCGAN_D, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
with self.name_scope():
main = nn.Sequential()
# input is nc x isize x isize
main.add(nn.Conv2D(in_channels=nc, channels=ndf, kernel_size=4, strides=2, padding=1, use_bias=False,
prefix='initial.conv.{0}-{1}'.format(nc, ndf)))
main.add(nn.LeakyReLU(0.2, prefix='initial.relu.{0}'.format(ndf)))
csize, cndf = isize / 2, ndf
# Extra layers
for t in range(n_extra_layers):
main.add(nn.Conv2D(in_channels=cndf, channels=cndf, kernel_size=3, strides=1, padding=1, use_bias=False,
prefix='extra-layers-{0}.{1}.conv'.format(t, cndf)))
main.add(nn.BatchNorm(in_channels=cndf, prefix='extra-layers-{0}.{1}.batchnorm'.format(t, cndf)))
main.add(nn.LeakyReLU(0.2, prefix='extra-layers-{0}.{1}.relu'.format(t, cndf)))
while csize > 4:
in_feat = cndf
out_feat = cndf * 2
main.add(nn.Conv2D(in_channels=in_feat, channels=out_feat, kernel_size=4, strides=2, padding=1,
use_bias=False, prefix='pyramid.{0}-{1}.conv'.format(in_feat, out_feat)))
main.add(nn.BatchNorm(in_channels=out_feat, prefix='pyramid.{0}.batchnorm'.format(out_feat)))
main.add(nn.LeakyReLU(0.2, prefix='pyramid.{0}.relu'.format(out_feat)))
cndf = cndf * 2
csize = csize / 2
# state size. K x 4 x 4
main.add(nn.Conv2D(in_channels=cndf, channels=1, kernel_size=4, strides=1, padding=0, use_bias=False,
prefix='final.{0}-{1}.conv'.format(cndf, 1)))
self.main = main
示例10: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self, ndf=64, n_layers=3, use_sigmoid=False):
super(NLayerDiscriminator, self).__init__()
self.model = nn.HybridSequential()
kw = 4
padw = 1
with self.name_scope():
self.model.add(
nn.Conv2D(ndf, kernel_size=kw, strides=2, padding=padw),
nn.LeakyReLU(0.2),
)
nf_mult = 1
for n in range(1, n_layers):
nf_mult = min(2**n, 8)
self.model.add(
nn.Conv2D(ndf * nf_mult,kernel_size=kw, strides=2, padding=padw),
nn.InstanceNorm(),
nn.LeakyReLU(0.2),
)
nf_mult = min(2**n_layers, 8)
self.model.add(
nn.Conv2D(ndf * nf_mult,kernel_size=kw, strides=1, padding=padw),
nn.InstanceNorm(),
nn.LeakyReLU(0.2),
)
self.model.add(
nn.Conv2D(1, kernel_size=kw, strides=1, padding=padw)
)
if use_sigmoid:
self.model.add(nn.Activation('sigmoid'))
示例11: _conv2d
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def _conv2d(channel, kernel, padding, stride, norm_layer=BatchNorm, norm_kwargs=None):
"""A common conv-bn-leakyrelu cell"""
cell = nn.HybridSequential(prefix='')
cell.add(nn.Conv2D(channel, kernel_size=kernel,
strides=stride, padding=padding, use_bias=False))
cell.add(norm_layer(epsilon=1e-5, momentum=0.9, **({} if norm_kwargs is None else norm_kwargs)))
cell.add(nn.LeakyReLU(0.1))
return cell
示例12: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self,
passes,
backbone_out_channels,
outs_channels,
depth,
growth_rate,
use_bn,
in_channels=3,
in_size=(256, 256),
**kwargs):
super(IbpPose, self).__init__(**kwargs)
self.in_size = in_size
activation = (lambda: nn.LeakyReLU(alpha=0.01))
with self.name_scope():
self.backbone = IbpBackbone(
in_channels=in_channels,
out_channels=backbone_out_channels,
activation=activation)
self.decoder = nn.HybridSequential(prefix="")
for i in range(passes):
merge = (i != passes - 1)
self.decoder.add(IbpPass(
channels=backbone_out_channels,
mid_channels=outs_channels,
depth=depth,
growth_rate=growth_rate,
merge=merge,
use_bn=use_bn,
activation=activation))
示例13: dark_convYxY
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def dark_convYxY(in_channels,
out_channels,
bn_use_global_stats,
alpha,
pointwise):
"""
DarkNet unit.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
bn_use_global_stats : bool
Whether global moving statistics is used instead of local batch-norm for BatchNorm layers.
alpha : float
Slope coefficient for Leaky ReLU activation.
pointwise : bool
Whether use 1x1 (pointwise) convolution or 3x3 convolution.
"""
if pointwise:
return conv1x1_block(
in_channels=in_channels,
out_channels=out_channels,
bn_use_global_stats=bn_use_global_stats,
activation=nn.LeakyReLU(alpha=alpha))
else:
return conv3x3_block(
in_channels=in_channels,
out_channels=out_channels,
bn_use_global_stats=bn_use_global_stats,
activation=nn.LeakyReLU(alpha=alpha))
示例14: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self, channels, kernel_size):
super().__init__()
with self.name_scope():
self.conv = nn.HybridSequential()
with self.conv.name_scope():
self.conv.add(
nn.Conv2D(channels, kernel_size, padding=1, use_bias=False),
nn.BatchNorm(),
nn.LeakyReLU(0.1)
)
示例15: __init__
# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import LeakyReLU [as 別名]
def __init__(self,
in_feats,
out_feats,
num_heads,
feat_drop=0.,
attn_drop=0.,
negative_slope=0.2,
residual=False,
activation=None):
super(GATConv, self).__init__()
self._num_heads = num_heads
self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
self._in_feats = in_feats
self._out_feats = out_feats
with self.name_scope():
if isinstance(in_feats, tuple):
self.fc_src = nn.Dense(out_feats * num_heads, use_bias=False,
weight_initializer=mx.init.Xavier(magnitude=math.sqrt(2.0)),
in_units=self._in_src_feats)
self.fc_dst = nn.Dense(out_feats * num_heads, use_bias=False,
weight_initializer=mx.init.Xavier(magnitude=math.sqrt(2.0)),
in_units=self._in_dst_feats)
else:
self.fc = nn.Dense(out_feats * num_heads, use_bias=False,
weight_initializer=mx.init.Xavier(magnitude=math.sqrt(2.0)),
in_units=in_feats)
self.attn_l = self.params.get('attn_l',
shape=(1, num_heads, out_feats),
init=mx.init.Xavier(magnitude=math.sqrt(2.0)))
self.attn_r = self.params.get('attn_r',
shape=(1, num_heads, out_feats),
init=mx.init.Xavier(magnitude=math.sqrt(2.0)))
self.feat_drop = nn.Dropout(feat_drop)
self.attn_drop = nn.Dropout(attn_drop)
self.leaky_relu = nn.LeakyReLU(negative_slope)
if residual:
if in_feats != out_feats:
self.res_fc = nn.Dense(out_feats * num_heads, use_bias=False,
weight_initializer=mx.init.Xavier(
magnitude=math.sqrt(2.0)),
in_units=in_feats)
else:
self.res_fc = Identity()
else:
self.res_fc = None
self.activation = activation