當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.InstanceNorm方法代碼示例

本文整理匯總了Python中mxnet.gluon.nn.InstanceNorm方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.InstanceNorm方法的具體用法?Python nn.InstanceNorm怎麽用?Python nn.InstanceNorm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.gluon.nn的用法示例。


在下文中一共展示了nn.InstanceNorm方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_instancenorm

# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import InstanceNorm [as 別名]
def test_instancenorm():
    layer = nn.InstanceNorm(in_channels=10)
    check_layer_forward(layer, (2, 10, 10, 10)) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:5,代碼來源:test_gluon.py

示例2: __init__

# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import InstanceNorm [as 別名]
def __init__(self, output_nc, ngf=64, use_dropout=False, n_blocks=6, padding_type='reflect'):
        assert(n_blocks >= 0)
        super(ResnetGenerator, self).__init__()
        self.output_nc = output_nc
        self.ngf = ngf
        self.model = nn.HybridSequential()
        with self.name_scope():
            self.model.add(
                nn.ReflectionPad2D(3),
                nn.Conv2D(ngf, kernel_size=7, padding=0),
                nn.InstanceNorm(),
                nn.Activation('relu')
            )

            n_downsampling = 2
            for i in range(n_downsampling):
                mult = 2**i
                self.model.add(
                    nn.Conv2D(ngf * mult * 2, kernel_size=3,strides=2, padding=1),
                    nn.InstanceNorm(),
                    nn.Activation('relu')
                )

            mult = 2**n_downsampling
            for i in range(n_blocks):
                self.model.add(
                    ResnetBlock(ngf * mult, padding_type=padding_type, use_dropout=use_dropout)
                )

            for i in range(n_downsampling):
                mult = 2**(n_downsampling - i)
                self.model.add(
                    nn.Conv2DTranspose(int(ngf * mult / 2),kernel_size=3,strides=2,padding=1,output_padding=1),
                    nn.InstanceNorm(),
                    nn.Activation('relu')
                )
            self.model.add(
                nn.ReflectionPad2D(3),
                nn.Conv2D(output_nc,kernel_size=7,padding=0),
                nn.Activation('tanh')
            ) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:43,代碼來源:train_cgan.py

示例3: build_conv_block

# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import InstanceNorm [as 別名]
def build_conv_block(self, dim, padding_type, use_dropout):
        conv_block = nn.HybridSequential()
        p = 0
        with self.name_scope():
            if padding_type == 'reflect':
                conv_block.add(nn.ReflectionPad2D(1))
            elif padding_type == 'zero':
                p = 1
            else:
                raise NotImplementedError('padding [%s] is not implemented' % padding_type)

            conv_block.add(
                nn.Conv2D(dim, kernel_size=3, padding=p),
                nn.InstanceNorm(),
                nn.Activation('relu')
            )
            if use_dropout:
                conv_block.add(nn.Dropout(0.5))

            p = 0
            if padding_type == 'reflect':
                conv_block.add(nn.ReflectionPad2D(1))
            elif padding_type == 'zero':
                p = 1
            else:
                raise NotImplementedError('padding [%s] is not implemented' % padding_type)
            conv_block.add(
                nn.Conv2D(dim, kernel_size=3, padding=p),
                nn.InstanceNorm()
            )

        return conv_block 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:34,代碼來源:train_cgan.py

示例4: __init__

# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import InstanceNorm [as 別名]
def __init__(self,
                 channels,
                 bn_use_global_stats=False,
                 first_fraction=0.5,
                 inst_first=True,
                 **kwargs):
        super(IBN, self).__init__(**kwargs)
        self.inst_first = inst_first
        h1_channels = int(math.floor(channels * first_fraction))
        h2_channels = channels - h1_channels
        self.split_sections = [h1_channels, h2_channels]

        if self.inst_first:
            self.inst_norm = nn.InstanceNorm(
                in_channels=h1_channels,
                scale=True)
            self.batch_norm = nn.BatchNorm(
                in_channels=h2_channels,
                use_global_stats=bn_use_global_stats)

        else:
            self.batch_norm = nn.BatchNorm(
                in_channels=h1_channels,
                use_global_stats=bn_use_global_stats)
            self.inst_norm = nn.InstanceNorm(
                in_channels=h2_channels,
                scale=True) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:29,代碼來源:common.py

示例5: __init__

# 需要導入模塊: from mxnet.gluon import nn [as 別名]
# 或者: from mxnet.gluon.nn import InstanceNorm [as 別名]
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 strides,
                 padding,
                 dilation=1,
                 groups=1,
                 use_bias=False,
                 activate=True,
                 **kwargs):
        super(IBNbConvBlock, self).__init__(**kwargs)
        self.activate = activate

        with self.name_scope():
            self.conv = nn.Conv2D(
                channels=out_channels,
                kernel_size=kernel_size,
                strides=strides,
                padding=padding,
                dilation=dilation,
                groups=groups,
                use_bias=use_bias,
                in_channels=in_channels)
            self.inst_norm = nn.InstanceNorm(
                in_channels=out_channels,
                scale=True)
            if self.activate:
                self.activ = nn.Activation("relu") 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:31,代碼來源:ibnbresnet.py


注:本文中的mxnet.gluon.nn.InstanceNorm方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。