當前位置: 首頁>>代碼示例>>Python>>正文


Python mxnet.gluon方法代碼示例

本文整理匯總了Python中mxnet.gluon方法的典型用法代碼示例。如果您正苦於以下問題:Python mxnet.gluon方法的具體用法?Python mxnet.gluon怎麽用?Python mxnet.gluon使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet的用法示例。


在下文中一共展示了mxnet.gluon方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_descriptor

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def get_descriptor(ctx):
    """ construct and return descriptor """
    d_net = gluon.nn.Sequential()
    with d_net.name_scope():

        d_net.add(SNConv2D(num_filter=64, kernel_size=4, strides=2, padding=1, in_channels=3, ctx=ctx))
        d_net.add(gluon.nn.LeakyReLU(0.2))

        d_net.add(SNConv2D(num_filter=128, kernel_size=4, strides=2, padding=1, in_channels=64, ctx=ctx))
        d_net.add(gluon.nn.LeakyReLU(0.2))

        d_net.add(SNConv2D(num_filter=256, kernel_size=4, strides=2, padding=1, in_channels=128, ctx=ctx))
        d_net.add(gluon.nn.LeakyReLU(0.2))

        d_net.add(SNConv2D(num_filter=512, kernel_size=4, strides=2, padding=1, in_channels=256, ctx=ctx))
        d_net.add(gluon.nn.LeakyReLU(0.2))

        d_net.add(SNConv2D(num_filter=1, kernel_size=4, strides=1, padding=0, in_channels=512, ctx=ctx))

    return d_net 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:model.py

示例2: test_exc_gluon

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def test_exc_gluon():
    def gluon(exec_wait=True):
        model = nn.Sequential()
        model.add(nn.Dense(128, activation='tanh', in_units=10, flatten=False))
        model.add(nn.Dropout(1))
        model.add(nn.Dense(64, activation='tanh', in_units=256),
                  nn.Dense(32, in_units=64))
        x = mx.sym.var('data')
        y = model(x)
        model.collect_params().initialize(ctx=[default_context()])
        z = model(mx.nd.random.normal(10, -10, (32, 2, 10), ctx=default_context()))
        if exec_wait:
            z.wait_to_read()

    gluon(exec_wait=False)
    assert_raises(MXNetError, gluon, True) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_exc_handling.py

示例3: infer

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def infer(ctx, count, val_data, batch_fn, opt, net, batch_size, acc_top1, acc_top5):
    """Inference using gluon"""
    if count>0:
        val_data.reset()
    for i, batch in enumerate(val_data):
        btic = time.time()
        data, label = batch_fn(batch, ctx)
        outputs = [net(X.astype(opt.dtype, copy=False)) for X in data]
        acc_top1.update(label, outputs)
        logging.info('Batch [%d]'%(i))
        logging.info('Top 1 accuracy: %d'%(acc_top1.get()[1]))
        time_taken = time.time() - btic
        if i<20:
            logging.info('warmup_throughput: %d samples/sec warmup_time %f'%(
                     int(batch_size / time_taken), time_taken))
        else:
            
            if count>0:
                logging.info('Speed: %d samples/sec Time cost=%f'%(
                         int(batch_size / time_taken), time_taken))
    return 
開發者ID:awslabs,項目名稱:deeplearning-benchmark,代碼行數:23,代碼來源:infer_imagenet_gpu.py

示例4: _transform_label

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def _transform_label(self, label, height, width):
        label = np.array(label).ravel()
        header_len = int(label[0])  # label header
        label_width = int(label[1])  # the label width for each object, >= 5
        if label_width < 5:
            raise ValueError(
                "Label info for each object shoudl >= 5, given {}".format(label_width))
        min_len = header_len + 5
        if len(label) < min_len:
            raise ValueError(
                "Expected label length >= {}, got {}".format(min_len, len(label)))
        if (len(label) - header_len) % label_width:
            raise ValueError(
                "Broken label of size {}, cannot reshape into (N, {}) "
                "if header length {} is excluded".format(len(label), label_width, header_len))
        gcv_label = label[header_len:].reshape(-1, label_width)
        # swap columns, gluon-cv requires [xmin-ymin-xmax-ymax-id-extra0-extra1-xxx]
        ids = gcv_label[:, 0].copy()
        gcv_label[:, :4] = gcv_label[:, 1:5]
        gcv_label[:, 4] = ids
        # restore to absolute coordinates
        gcv_label[:, (0, 2)] *= width
        gcv_label[:, (1, 3)] *= height
        return gcv_label 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:26,代碼來源:detection.py

示例5: preprocess

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def preprocess(data):
    """Preprocess the image before running it through the network"""
    data = mx.image.imresize(data, image_sz[0], image_sz[1])
    data = data.astype(np.float32)
    data = data/255
    # These mean values were obtained from
    # https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html
    data = mx.image.color_normalize(data,
                                    mean=mx.nd.array([0.485, 0.456, 0.406]),
                                    std=mx.nd.array([0.229, 0.224, 0.225]))
    data = mx.nd.transpose(data, (2,0,1)) # Channel first
    return data 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:14,代碼來源:gradcam_demo.py

示例6: get_generator

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def get_generator():
    """ construct and return generator """
    g_net = gluon.nn.Sequential()
    with g_net.name_scope():

        g_net.add(gluon.nn.Conv2DTranspose(
            channels=512, kernel_size=4, strides=1, padding=0, use_bias=False))
        g_net.add(gluon.nn.BatchNorm())
        g_net.add(gluon.nn.LeakyReLU(0.2))

        g_net.add(gluon.nn.Conv2DTranspose(
            channels=256, kernel_size=4, strides=2, padding=1, use_bias=False))
        g_net.add(gluon.nn.BatchNorm())
        g_net.add(gluon.nn.LeakyReLU(0.2))

        g_net.add(gluon.nn.Conv2DTranspose(
            channels=128, kernel_size=4, strides=2, padding=1, use_bias=False))
        g_net.add(gluon.nn.BatchNorm())
        g_net.add(gluon.nn.LeakyReLU(0.2))

        g_net.add(gluon.nn.Conv2DTranspose(
            channels=64, kernel_size=4, strides=2, padding=1, use_bias=False))
        g_net.add(gluon.nn.BatchNorm())
        g_net.add(gluon.nn.LeakyReLU(0.2))

        g_net.add(gluon.nn.Conv2DTranspose(channels=3, kernel_size=4, strides=2, padding=1, use_bias=False))
        g_net.add(gluon.nn.Activation('tanh'))

    return g_net 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:31,代碼來源:model.py

示例7: get_training_data

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def get_training_data(batch_size):
    """ helper function to get dataloader"""
    return gluon.data.DataLoader(
        CIFAR10(train=True, transform=transformer),
        batch_size=batch_size, shuffle=True, last_batch='discard') 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:7,代碼來源:data.py

示例8: _transform_label

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def _transform_label(label, height=None, width=None):
    label = np.array(label).ravel()
    header_len = int(label[0])  # label header
    label_width = int(label[1])  # the label width for each object, >= 5
    if label_width < 5:
        raise ValueError(
            "Label info for each object should >= 5, given {}".format(label_width))
    min_len = header_len + 5
    if len(label) < min_len:
        raise ValueError(
            "Expected label length >= {}, got {}".format(min_len, len(label)))
    if (len(label) - header_len) % label_width:
        raise ValueError(
            "Broken label of size {}, cannot reshape into (N, {}) "
            "if header length {} is excluded".format(len(label), label_width, header_len))
    gcv_label = label[header_len:].reshape(-1, label_width)
    # swap columns, gluon-cv requires [xmin-ymin-xmax-ymax-id-extra0-extra1-xxx]
    ids = gcv_label[:, 0].copy()
    gcv_label[:, :4] = gcv_label[:, 1:5]
    gcv_label[:, 4] = ids
    # restore to absolute coordinates
    if height is not None:
        gcv_label[:, (0, 2)] *= width
    if width is not None:
        gcv_label[:, (1, 3)] *= height
    return gcv_label 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:28,代碼來源:detection.py

示例9: __init__

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def __init__(self, model_path, gpu_id=None):
        """
        初始化gluon模型
        :param model_path: 模型地址
        :param gpu_id: 在哪一塊gpu上運行
        """
        info = pickle.load(open(model_path.replace('.params', '.info'), 'rb'))
        print('load {} epoch params'.format(info['epoch']))
        config = info['config']
        alphabet = config['dataset']['alphabet']
        self.ctx = try_gpu(gpu_id)

        self.transform = []
        for t in config['dataset']['train']['dataset']['args']['transforms']:
            if t['type'] in ['ToTensor', 'Normalize']:
                self.transform.append(t)
        self.transform = get_transforms(self.transform)

        self.gpu_id = gpu_id
        img_h, img_w = 32, 100
        for process in config['dataset']['train']['dataset']['args']['pre_processes']:
            if process['type'] == "Resize":
                img_h = process['args']['img_h']
                img_w = process['args']['img_w']
                break
        self.img_w = img_w
        self.img_h = img_h
        self.img_mode = config['dataset']['train']['dataset']['args']['img_mode']
        self.alphabet = alphabet
        self.net = get_model(len(alphabet), self.ctx, config['arch']['args'])
        self.net.load_parameters(model_path, self.ctx)
        # self.net = gluon.SymbolBlock.imports('crnn_lite-symbol.json', ['data'], 'crnn_lite-0000.params', ctx=self.ctx)
        self.net.hybridize() 
開發者ID:WenmuZhou,項目名稱:crnn.gluon,代碼行數:35,代碼來源:predict.py

示例10: get_data_rec

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def get_data_rec(rec_val, rec_val_idx, batch_size, num_workers):
    """
       Creates and returns data MXNet Data Iterator object and a function that splits data into batches
       (if using image record iter for input)
    """
    rec_val = os.path.expanduser(rec_val)
    rec_val_idx = os.path.expanduser(rec_val_idx)
    mean_rgb = [123.68, 116.779, 103.939]
    
    def batch_fn(batch, ctx):
        data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
        return data, label
    
    val_data = mx.io.ImageRecordIter(
        path_imgrec         = rec_val,
        path_imgidx         = rec_val_idx,
        preprocess_threads  = num_workers,
        shuffle             = False,
        batch_size          = batch_size,
        resize              = 256,
        label_width         = 1,
        rand_crop           = False,
        rand_mirror         = False,
        data_shape          = (3, 224, 224),
        mean_r              = mean_rgb[0],
        mean_g              = mean_rgb[1],
        mean_b              = mean_rgb[2]
    )
    return val_data, batch_fn 
開發者ID:awslabs,項目名稱:deeplearning-benchmark,代碼行數:32,代碼來源:infer_imagenet_gpu.py

示例11: get_data_loader

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def get_data_loader(data_dir, batch_size, num_workers, opt):
    """
       Creates and returns data MXNet Data Loader object and a function that splits data into batches
    """
    normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    def batch_fn(batch, ctx):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
        return data, label
    if opt.mode == 'symbolic':
        val_data = mx.io.NDArrayIter(
            mx.nd.random.normal(shape=(opt.dataset_size, 3, 224, 224), ctx=context),
            label=mx.nd.array(range(opt.dataset_size)),
            batch_size=batch_size,
        )
        transform_test = transforms.Compose([
            transforms.Resize(256, keep_ratio=True),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize
        ])
        val_data = gluon.data.DataLoader(
            imagenet.classification.ImageNet(data_dir, train=False).transform_first(transform_test),
            batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return val_data, batch_fn 
開發者ID:awslabs,項目名稱:deeplearning-benchmark,代碼行數:28,代碼來源:infer_imagenet_gpu.py

示例12: _net2pb

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def _net2pb(net):
    if isinstance(net, HybridBlock):
        # TODO(junwu): may need a more approprite way to get symbol from a HybridBlock
        if not net._cached_graph:
            raise RuntimeError(
                "Please first call net.hybridize() and then run forward with "
                "this net at least once before calling add_graph().")
        net = net._cached_graph[1]
    elif not isinstance(net, Symbol):
        raise TypeError('only accepts mxnet.gluon.HybridBlock and mxnet.symbol.Symbol '
                        'as input network, received type {}'.format(str(type(net))))
    return _sym2pb(net) 
開發者ID:awslabs,項目名稱:mxboard,代碼行數:14,代碼來源:summary.py

示例13: doctest

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def doctest(doctest_namespace):
    doctest_namespace["np"] = np
    doctest_namespace["gluonts"] = gluonts
    doctest_namespace["mx"] = mx
    doctest_namespace["gluon"] = mx.gluon
    import doctest

    doctest.ELLIPSIS_MARKER = "-etc-" 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:10,代碼來源:conftest.py

示例14: cifar10_infer

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import gluon [as 別名]
def cifar10_infer(model_name, use_tensorrt, num_workers, ctx=mx.gpu(0), batch_size=128):
    executor = get_classif_model(model_name, use_tensorrt, ctx, batch_size)

    num_ex = 10000
    all_preds = np.zeros([num_ex, 10])

    all_label_test = np.zeros(num_ex)

    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
    ])

    data_loader = lambda: gluon.data.DataLoader(
        gluon.data.vision.CIFAR10(train=False).transform_first(transform_test),
        batch_size=batch_size, shuffle=False, num_workers=num_workers)

    val_data = data_loader()

    for idx, (data, label) in enumerate(val_data):
        # Skip last batch if it's undersized.
        if data.shape[0] < batch_size:
            continue
        offset = idx * batch_size
        all_label_test[offset:offset + batch_size] = label.asnumpy()

        # warm-up, but don't use result
        executor.forward(is_train=False, data=data)
        executor.outputs[0].wait_to_read()

    gc.collect()
    val_data = data_loader()
    example_ct = 0
    start = time()

    # if use_tensorrt:
    for idx, (data, label) in enumerate(val_data):
        # Skip last batch if it's undersized.
        if data.shape[0] < batch_size:
            continue
        executor.forward(is_train=False, data=data)
        preds = executor.outputs[0].asnumpy()
        offset = idx * batch_size
        all_preds[offset:offset + batch_size, :] = preds[:batch_size]
        example_ct += batch_size

    all_preds = np.argmax(all_preds, axis=1)
    matches = (all_preds[:example_ct] == all_label_test[:example_ct]).sum()
    duration = time() - start

    return duration, 100.0 * matches / example_ct 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:53,代碼來源:test_cvnets.py


注:本文中的mxnet.gluon方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。