本文整理匯總了Python中mxnet.gluon.data.vision.transforms.RandomResizedCrop方法的典型用法代碼示例。如果您正苦於以下問題:Python transforms.RandomResizedCrop方法的具體用法?Python transforms.RandomResizedCrop怎麽用?Python transforms.RandomResizedCrop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet.gluon.data.vision.transforms
的用法示例。
在下文中一共展示了transforms.RandomResizedCrop方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_transformer
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def test_transformer():
from mxnet.gluon.data.vision import transforms
transform = transforms.Compose([
transforms.Resize(300),
transforms.Resize(300, keep_ratio=True),
transforms.CenterCrop(256),
transforms.RandomResizedCrop(224),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(0.1, 0.1, 0.1, 0.1),
transforms.RandomBrightness(0.1),
transforms.RandomContrast(0.1),
transforms.RandomSaturation(0.1),
transforms.RandomHue(0.1),
transforms.RandomLighting(0.1),
transforms.ToTensor(),
transforms.Normalize([0, 0, 0], [1, 1, 1])])
transform(mx.nd.ones((245, 480, 3), dtype='uint8')).wait_to_read()
示例2: create_transformer
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def create_transformer(self):
train_tforms, eval_tforms = [transforms.Resize(self.args.resize)], [transforms.Resize(self.args.resize)]
if self.args.random_crop:
train_tforms.append(transforms.RandomResizedCrop(self.args.size, scale=(0.8, 1.2)))
else:
train_tforms.append(transforms.CenterCrop(self.args.size))
eval_tforms.append(transforms.CenterCrop(self.args.size))
if self.args.flip:
train_tforms.append(transforms.RandomFlipLeftRight())
if self.args.random_color:
train_tforms.append(transforms.RandomColorJitter(self.args.color_jitter, self.args.color_jitter,
self.args.color_jitter, 0.1))
train_tforms.extend([transforms.ToTensor(), transforms.Normalize(self.args.mean, self.args.std)])
eval_tforms.extend([transforms.ToTensor(), transforms.Normalize(self.args.mean, self.args.std)])
train_tforms = transforms.Compose(train_tforms)
eval_tforms = transforms.Compose(eval_tforms)
return train_tforms, eval_tforms
示例3: test_transformer
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def test_transformer():
from mxnet.gluon.data.vision import transforms
transform = transforms.Compose([
transforms.Resize(300),
transforms.CenterCrop(256),
transforms.RandomResizedCrop(224),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(0.1, 0.1, 0.1, 0.1),
transforms.RandomBrightness(0.1),
transforms.RandomContrast(0.1),
transforms.RandomSaturation(0.1),
transforms.RandomHue(0.1),
transforms.RandomLighting(0.1),
transforms.ToTensor(),
transforms.Normalize([0, 0, 0], [1, 1, 1])])
transform(mx.nd.ones((245, 480, 3), dtype='uint8')).wait_to_read()
示例4: create_loader
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def create_loader(self):
"""
Overwrite the data loader function
:return: pairwised data loader, None, eval source loader, test target loader
"""
cpus = cpu_count()
train_tforms, eval_tforms = [transforms.Resize(self.args.resize)], [transforms.Resize(self.args.resize)]
if self.args.random_crop:
train_tforms.append(transforms.RandomResizedCrop(self.args.size, scale=(0.8, 1.2)))
else:
train_tforms.append(transforms.CenterCrop(self.args.size))
eval_tforms.append(transforms.CenterCrop(self.args.size))
if self.args.flip:
train_tforms.append(transforms.RandomFlipLeftRight())
if self.args.random_color:
train_tforms.append(transforms.RandomColorJitter(self.args.color_jitter, self.args.color_jitter,
self.args.color_jitter, 0.1))
train_tforms.extend([transforms.ToTensor(), transforms.Normalize(self.args.mean, self.args.std)])
eval_tforms.extend([transforms.ToTensor(), transforms.Normalize(self.args.mean, self.args.std)])
train_tforms = transforms.Compose(train_tforms)
eval_tforms = transforms.Compose(eval_tforms)
if 'digits' in self.args.cfg:
trs_set, tes_set, tet_set = self.create_digits_datasets(train_tforms, eval_tforms)
elif 'office' in self.args.cfg:
trs_set, tes_set, tet_set = self.create_office_datasets(train_tforms, eval_tforms)
elif 'visda' in self.args.cfg:
trs_set, tes_set, tet_set = self.create_visda_datasets(train_tforms, eval_tforms)
else:
raise NotImplementedError
self.train_src_loader = DataLoader(trs_set, self.args.bs, shuffle=True, num_workers=cpus)
self.test_src_loader = DataLoader(tes_set, self.args.bs, shuffle=False, num_workers=cpus)
self.test_tgt_loader = DataLoader(tet_set, self.args.bs, shuffle=False, num_workers=cpus)
示例5: get_data_loader
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def get_data_loader(data_dir, batch_size, num_workers):
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
jitter_param = 0.4
lighting_param = 0.1
input_size = opt.input_size
crop_ratio = opt.crop_ratio if opt.crop_ratio > 0 else 0.875
resize = int(math.ceil(input_size / crop_ratio))
def batch_fn(batch, ctx):
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
return data, label
transform_train = transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param,
saturation=jitter_param),
transforms.RandomLighting(lighting_param),
transforms.ToTensor(),
normalize
])
transform_test = transforms.Compose([
transforms.Resize(resize, keep_ratio=True),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
normalize
])
train_data = gluon.data.DataLoader(
imagenet.classification.ImageNet(data_dir, train=True).transform_first(transform_train),
batch_size=batch_size, shuffle=True, last_batch='discard', num_workers=num_workers)
val_data = gluon.data.DataLoader(
imagenet.classification.ImageNet(data_dir, train=False).transform_first(transform_test),
batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_data, val_data, batch_fn
示例6: get_data_loader
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def get_data_loader(data_dir, batch_size, num_workers):
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
jitter_param = 0.4
lighting_param = 0.1
def batch_fn(batch, ctx):
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
return data, label
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param,
saturation=jitter_param),
transforms.RandomLighting(lighting_param),
transforms.ToTensor(),
normalize
])
transform_test = transforms.Compose([
transforms.Resize(256, keep_ratio=True),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
])
train_data = gluon.data.DataLoader(
imagenet.classification.ImageNet(data_dir, train=True).transform_first(transform_train),
batch_size=batch_size, shuffle=True, last_batch='discard', num_workers=num_workers)
val_data = gluon.data.DataLoader(
imagenet.classification.ImageNet(data_dir, train=False).transform_first(transform_test),
batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_data, val_data, batch_fn
示例7: get_train_data
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def get_train_data(rec_train, batch_size, data_nthreads, input_size, crop_ratio, args):
def train_batch_fn(batch, ctx):
data = batch[0].as_in_context(ctx)
label = batch[1].as_in_context(ctx)
return data, label
jitter_param = 0.4
lighting_param = 0.1
resize = int(math.ceil(input_size / crop_ratio))
train_transforms = []
if args.auto_aug:
print('Using AutoAugment')
from autogluon.utils.augment import AugmentationBlock, autoaug_imagenet_policies
train_transforms.append(AugmentationBlock(autoaug_imagenet_policies()))
from gluoncv.utils.transforms import EfficientNetRandomCrop
from autogluon.utils import pil_transforms
if input_size >= 320:
train_transforms.extend([
EfficientNetRandomCrop(input_size),
pil_transforms.Resize((input_size, input_size), interpolation=Image.BICUBIC),
pil_transforms.RandomHorizontalFlip(),
pil_transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomLighting(lighting_param),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
else:
train_transforms.extend([
transforms.RandomResizedCrop(input_size),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param,
saturation=jitter_param),
transforms.RandomLighting(lighting_param),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
transform_train = transforms.Compose(train_transforms)
train_set = mx.gluon.data.vision.ImageRecordDataset(rec_train).transform_first(transform_train)
train_sampler = SplitSampler(len(train_set), num_parts=num_workers, part_index=rank)
train_data = gluon.data.DataLoader(train_set, batch_size=batch_size,# shuffle=True,
last_batch='discard', num_workers=data_nthreads,
sampler=train_sampler)
return train_data, train_batch_fn
示例8: imagenet_train_transform
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def imagenet_train_transform(ds_metainfo,
jitter_param=0.4,
lighting_param=0.1):
"""
Create image transform sequence for training subset.
Parameters:
----------
ds_metainfo : DatasetMetaInfo
ImageNet-1K dataset metainfo.
jitter_param : float
How much to jitter values.
lighting_param : float
How much to noise intensity of the image.
Returns
-------
Sequential
Image transform sequence.
"""
input_image_size = ds_metainfo.input_image_size
if ds_metainfo.aug_type == "aug0":
interpolation = ds_metainfo.interpolation
transform_list = []
elif ds_metainfo.aug_type == "aug1":
interpolation = 10
transform_list = []
elif ds_metainfo.aug_type == "aug2":
interpolation = 10
transform_list = [
ImgAugTransform()
]
else:
raise RuntimeError("Unknown augmentation type: {}\n".format(ds_metainfo.aug_type))
transform_list += [
transforms.RandomResizedCrop(
size=input_image_size,
interpolation=interpolation),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(
brightness=jitter_param,
contrast=jitter_param,
saturation=jitter_param),
transforms.RandomLighting(lighting_param),
transforms.ToTensor(),
transforms.Normalize(
mean=ds_metainfo.mean_rgb,
std=ds_metainfo.std_rgb)
]
return transforms.Compose(transform_list)
示例9: generate_transform
# 需要導入模塊: from mxnet.gluon.data.vision import transforms [as 別名]
# 或者: from mxnet.gluon.data.vision.transforms import RandomResizedCrop [as 別名]
def generate_transform(train, resize, _is_osx, input_size, jitter_param):
if _is_osx:
# using PIL to load image (slow)
if train:
transform = Compose(
[
RandomResizedCrop(input_size),
RandomHorizontalFlip(),
ColorJitter(0.4, 0.4, 0.4),
ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
)
else:
transform = Compose(
[
Resize(resize),
CenterCrop(input_size),
ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
)
else:
if train:
transform = transforms.Compose(
[
transforms.RandomResizedCrop(input_size),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(
brightness=jitter_param,
contrast=jitter_param,
saturation=jitter_param
),
transforms.RandomLighting(0.1),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
)
else:
transform = transforms.Compose(
[
transforms.Resize(resize),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
)
return transform