當前位置: 首頁>>代碼示例>>Python>>正文


Python context.cpu方法代碼示例

本文整理匯總了Python中mxnet.context.cpu方法的典型用法代碼示例。如果您正苦於以下問題:Python context.cpu方法的具體用法?Python context.cpu怎麽用?Python context.cpu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.context的用法示例。


在下文中一共展示了context.cpu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def __init__(self, symbol, data_names, label_names,
                 logger=logging, context=ctx.cpu(), work_load_list=None,
                 max_data_shapes=None, max_label_shapes=None, fixed_param_prefix=None):
        super(MutableModule, self).__init__(logger=logger)
        self._symbol = symbol
        self._data_names = data_names
        self._label_names = label_names
        self._context = context
        self._work_load_list = work_load_list

        self._curr_module = None
        self._max_data_shapes = max_data_shapes
        self._max_label_shapes = max_label_shapes
        self._fixed_param_prefix = fixed_param_prefix

        fixed_param_names = list()
        if fixed_param_prefix is not None:
            for name in self._symbol.list_arguments():
                for prefix in self._fixed_param_prefix:
                    if prefix in name:
                        fixed_param_names.append(name)
        self._fixed_param_names = fixed_param_names 
開發者ID:deepinsight,項目名稱:insightface,代碼行數:24,代碼來源:module_bak.py

示例2: get_params

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def get_params(self, arg_params, aux_params):
        """ Copy data from each executor to `arg_params` and `aux_params`.

        Parameters
        ----------
        arg_params : list of NDArray
            target parameter arrays
        aux_params : list of NDArray
            target aux arrays

        Notes
        -----
        - This function will inplace update the NDArrays in arg_params and aux_params.
        """
        for name, block in zip(self.param_names, self.param_arrays):
            weight = sum(w.copyto(ctx.cpu()) for w in block) / len(block)
            weight.astype(arg_params[name].dtype).copyto(arg_params[name])
        for name, block in zip(self.aux_names, self.aux_arrays):
            weight = sum(w.copyto(ctx.cpu()) for w in block) / len(block)
            weight.astype(aux_params[name].dtype).copyto(aux_params[name]) 
開發者ID:tonysy,項目名稱:Deep-Feature-Flow-Segmentation,代碼行數:22,代碼來源:DataParallelExecutorGroup.py

示例3: __init__

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def __init__(self, symbol, data_names, label_names,
                 logger=logging, context=ctx.cpu(), work_load_list=None,
                 max_data_shapes=None, max_label_shapes=None, fixed_param_prefix=None):
        super(MutableModule, self).__init__(logger=logger)
        self._symbol = symbol
        self._data_names = data_names
        self._label_names = label_names
        self._context = context
        self._work_load_list = work_load_list

        self._curr_module = None
        self._max_data_shapes = max_data_shapes
        self._max_label_shapes = max_label_shapes
        self._fixed_param_prefix = fixed_param_prefix

        fixed_param_names = list()
        if fixed_param_prefix is not None:
            for name in self._symbol.list_arguments():
                for prefix in self._fixed_param_prefix:
                    if prefix in name:
                        fixed_param_names.append(name)
        self._fixed_param_names = fixed_param_names
        self._preload_opt_states = None 
開發者ID:tonysy,項目名稱:Deep-Feature-Flow-Segmentation,代碼行數:25,代碼來源:module.py

示例4: get_duc_mobilenet

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def get_duc_mobilenet(base_network, pretrained=False, ctx=cpu(), **kwargs):
    """Get mobilenet with duc upsampling layers.

    Parameters
    ----------
    base_network : str
        Name of the base feature extraction network.
    pretrained : bool
        Whether load pretrained base network.
    ctx : mxnet.Context
        mx.cpu() or mx.gpu()
    Returns
    -------
    nn.HybridBlock
        Network instance of mobilenet with duc upsampling layers

    """
    net = DUCMobilenet(base_network=base_network, pretrained_base=pretrained, **kwargs)
    with warnings.catch_warnings(record=True) as _:
        warnings.simplefilter("always")
        net.initialize()
    net.collect_params().reset_ctx(ctx)
    return net 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:25,代碼來源:duc_mobilenet.py

示例5: __init__

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def __init__(self, nclass, backbone='resnet50', aux=True, ctx=cpu(), pretrained_base=True,
                 height=None, width=None, base_size=520, crop_size=480, **kwargs):
        super(DeepLabV3, self).__init__(nclass, aux, backbone, ctx=ctx, base_size=base_size,
                                     crop_size=crop_size, pretrained_base=pretrained_base, **kwargs)
        height = height if height is not None else crop_size
        width = width if width is not None else crop_size
        with self.name_scope():
            self.head = _DeepLabHead(nclass, height=height//8,
                                     width=width//8, **kwargs)
            self.head.initialize(ctx=ctx)
            self.head.collect_params().setattr('lr_mult', 10)
            if self.aux:
                self.auxlayer = _FCNHead(1024, nclass, **kwargs)
                self.auxlayer.initialize(ctx=ctx)
                self.auxlayer.collect_params().setattr('lr_mult', 10)
        self._up_kwargs = {'height': height, 'width': width} 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:18,代碼來源:deeplabv3.py

示例6: __init__

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def __init__(self, width_mult=1, ctx=cpu(), **kwargs):
        configs = list(map(lambda x: 3 if x == 3 else
                           int(x*width_mult), AlexNetLegacy.configs))
        super(AlexNetLegacy, self).__init__(**kwargs)
        with self.name_scope():
            self.features = nn.HybridSequential(prefix='')
            with self.features.name_scope():
                self.features.add(nn.Conv2D(configs[1], kernel_size=11, strides=2),
                                  nn.BatchNorm(),
                                  nn.MaxPool2D(pool_size=3, strides=2),
                                  nn.Activation('relu'))
                self.features.add(nn.Conv2D(configs[2], kernel_size=5),
                                  nn.BatchNorm(),
                                  nn.MaxPool2D(pool_size=3, strides=2),
                                  nn.Activation('relu'))
                self.features.add(nn.Conv2D(configs[3], kernel_size=3),
                                  nn.BatchNorm(),
                                  nn.Activation('relu'))
                self.features.add(nn.Conv2D(configs[4], kernel_size=3),
                                  nn.BatchNorm(),
                                  nn.Activation('relu'))
                self.features.add(nn.Conv2D(configs[5], kernel_size=3),
                                  nn.BatchNorm())
            self.features.initialize(ctx=ctx) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:26,代碼來源:siam_alexnet.py

示例7: alexnet

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def alexnet(pretrained=False, ctx=cpu(),
            root='~/.mxnet/models', **kwargs):
    r"""AlexNet model from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.

    Parameters
    ----------
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    root : str, default $MXNET_HOME/models
        Location for keeping the model parameters.
    """
    net = AlexNet(**kwargs)
    if pretrained:
        from .model_store import get_model_file
        net.load_parameters(get_model_file('alexnet', tag=pretrained, root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        net.synset = attrib.synset
        net.classes = attrib.classes
        net.classes_long = attrib.classes_long
    return net 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:26,代碼來源:alexnet.py

示例8: kv_push

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def kv_push(self, key, value):
      #if value.context!=mx.cpu():
      #  value = value.as_in_context(mx.cpu())
      if not key in self._kvinit:
        self._distkv.init(key, nd.zeros_like(value))
        self._kvinit[key] = 1
      self._distkv.push(key, value)

    #get fc1 and partial fc7 
開發者ID:deepinsight,項目名稱:insightface,代碼行數:11,代碼來源:parall_module_local_v1.py

示例9: load

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def load(prefix, epoch, load_optimizer_states=False, **kwargs):
        """Create a model from previously saved checkpoint.

        Parameters
        ----------
        prefix : str
            path prefix of saved model files. You should have
            "prefix-symbol.json", "prefix-xxxx.params", and
            optionally "prefix-xxxx.states", where xxxx is the
            epoch number.
        epoch : int
            epoch to load.
        load_optimizer_states : bool
            whether to load optimizer states. Checkpoint needs
            to have been made with save_optimizer_states=True.
        data_names : list of str
            Default is `('data')` for a typical model used in image classification.
        label_names : list of str
            Default is `('softmax_label')` for a typical model used in image
            classification.
        logger : Logger
            Default is `logging`.
        context : Context or list of Context
            Default is `cpu()`.
        work_load_list : list of number
            Default `None`, indicating uniform workload.
        fixed_param_names: list of str
            Default `None`, indicating no network parameters are fixed.
        """
        sym, args, auxs = load_checkpoint(prefix, epoch)
        mod = Module(symbol=sym, **kwargs)
        mod._arg_params = args
        mod._aux_params = auxs
        mod.params_initialized = True
        if load_optimizer_states:
            mod._preload_opt_states = '%s-%04d.states'%(prefix, epoch)
        return mod 
開發者ID:tonysy,項目名稱:Deep-Feature-Flow-Segmentation,代碼行數:39,代碼來源:module.py

示例10: resnest14

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def resnest14(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
    """Constructs a ResNeSt-14 model.

    Parameters
    ----------
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    dilated: bool, default False
        Whether to apply dilation strategy to ResNeSt, yielding a stride 8 model.
    norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`).
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    model = ResNeSt(Bottleneck, [1, 1, 1, 1],
                    radix=2, cardinality=1, bottleneck_width=64,
                    deep_stem=True, avg_down=True,
                    avd=True, avd_first=False,
                    use_splat=True, dropblock_prob=0.0,
                    name_prefix='resnest_', **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_parameters(get_model_file('resnest14', root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        model.synset = attrib.synset
        model.classes = attrib.classes
        model.classes_long = attrib.classes_long
    return model 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:35,代碼來源:resnest.py

示例11: resnest26

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def resnest26(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
    """Constructs a ResNeSt-26 model.

    Parameters
    ----------
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    dilated: bool, default False
        Whether to apply dilation strategy to ResNeSt, yielding a stride 8 model.
    norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`).
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    model = ResNeSt(Bottleneck, [2, 2, 2, 2],
                    radix=2, cardinality=1, bottleneck_width=64,
                    deep_stem=True, avg_down=True,
                    avd=True, avd_first=False,
                    use_splat=True, dropblock_prob=0.1,
                    name_prefix='resnest_', **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_parameters(get_model_file('resnest26', root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        model.synset = attrib.synset
        model.classes = attrib.classes
        model.classes_long = attrib.classes_long
    return model 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:35,代碼來源:resnest.py

示例12: resnest50

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def resnest50(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
    """Constructs a ResNeSt-50 model.

    Parameters
    ----------
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    dilated: bool, default False
        Whether to apply dilation strategy to ResNeSt, yielding a stride 8 model.
    norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`).
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    model = ResNeSt(Bottleneck, [3, 4, 6, 3],
                    radix=2, cardinality=1, bottleneck_width=64,
                    deep_stem=True, avg_down=True,
                    avd=True, avd_first=False,
                    use_splat=True, dropblock_prob=0.1,
                    name_prefix='resnest_', **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_parameters(get_model_file('resnest50', root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        model.synset = attrib.synset
        model.classes = attrib.classes
        model.classes_long = attrib.classes_long
    return model 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:35,代碼來源:resnest.py

示例13: resnest101

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def resnest101(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
    """Constructs a ResNeSt-101 model.

    Parameters
    ----------
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    dilated: bool, default False
        Whether to apply dilation strategy to ResNeSt, yielding a stride 8 model.
    norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`).
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    model = ResNeSt(Bottleneck, [3, 4, 23, 3],
                    radix=2, cardinality=1, bottleneck_width=64,
                    deep_stem=True, avg_down=True, stem_width=64,
                    avd=True, avd_first=False, use_splat=True, dropblock_prob=0.1,
                    name_prefix='resnest_', **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_parameters(get_model_file('resnest101', root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        model.synset = attrib.synset
        model.classes = attrib.classes
        model.classes_long = attrib.classes_long
    return model 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:34,代碼來源:resnest.py

示例14: resnest200

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def resnest200(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
    """Constructs a ResNeSt-200 model.

    Parameters
    ----------
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    dilated: bool, default False
        Whether to apply dilation strategy to ResNeSt, yielding a stride 8 model.
    norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`).
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    model = ResNeSt(Bottleneck, [3, 24, 36, 3], deep_stem=True, avg_down=True, stem_width=64,
                    avd=True, use_splat=True, dropblock_prob=0.1, final_drop=0.2,
                    name_prefix='resnest_', **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_parameters(get_model_file('resnest200', root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        model.synset = attrib.synset
        model.classes = attrib.classes
        model.classes_long = attrib.classes_long
    return model 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:32,代碼來源:resnest.py

示例15: get_squeezenet

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import cpu [as 別名]
def get_squeezenet(version, pretrained=False, ctx=cpu(),
                   root='~/.mxnet/models', **kwargs):
    r"""SqueezeNet model from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
    and <0.5MB model size" <https://arxiv.org/abs/1602.07360>`_ paper.
    SqueezeNet 1.1 model from the `official SqueezeNet repo
    <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
    SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
    than SqueezeNet 1.0, without sacrificing accuracy.

    Parameters
    ----------
    version : str
        Version of squeezenet. Options are '1.0', '1.1'.
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    root : str, default $MXNET_HOME/models
        Location for keeping the model parameters.
    """
    net = SqueezeNet(version, **kwargs)
    if pretrained:
        from .model_store import get_model_file
        net.load_parameters(get_model_file('squeezenet%s'%version,
                                           tag=pretrained, root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        net.synset = attrib.synset
        net.classes = attrib.classes
        net.classes_long = attrib.classes_long
    return net 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:34,代碼來源:squeezenet.py


注:本文中的mxnet.context.cpu方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。