當前位置: 首頁>>代碼示例>>Python>>正文


Python context.Context方法代碼示例

本文整理匯總了Python中mxnet.context.Context方法的典型用法代碼示例。如果您正苦於以下問題:Python context.Context方法的具體用法?Python context.Context怎麽用?Python context.Context使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet.context的用法示例。


在下文中一共展示了context.Context方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: default_mp_pad_batchify_fn

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import Context [as 別名]
def default_mp_pad_batchify_fn(data):
    """Use shared memory for collating data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        out = nd.empty((len(data),) + data[0].shape, dtype=data[0].dtype,
                       ctx=context.Context('cpu_shared', 0))
        return nd.stack(*data, out=out)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_mp_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        batch_size = len(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((batch_size, pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype, ctx=context.Context('cpu_shared', 0)) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:19,代碼來源:dataloader.py

示例2: batchify

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import Context [as 別名]
def batchify(
    data: List[dict],
    dtype: DType,
    multi_processing: bool,
    single_process_ctx: Optional[mx.Context] = None,
    variable_length: bool = False,
) -> DataBatch:
    """reduce the list of dictionaries to a single dictionary, where values
        referenced by identical key are reduced using the stack function"""
    return {
        key: stack(
            data=[item[key] for item in data],
            multi_processing=multi_processing,
            dtype=dtype,
            single_process_ctx=single_process_ctx,
            variable_length=variable_length,
        )
        for key in data[0].keys()
    } 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:21,代碼來源:parallelized_loader.py

示例3: _as_in_context

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import Context [as 別名]
def _as_in_context(batch: dict, ctx: mx.Context) -> DataBatch:
    """Move data into new context, should only be in main process."""
    assert (
        not MPWorkerInfo.worker_process
    ), "This function is not meant to be used in workers."
    batch = {
        k: v.as_in_context(ctx) if isinstance(v, nd.NDArray)
        # Workaround due to MXNet not being able to handle NDArrays with 0 in shape properly:
        else (
            stack(v, False, v.dtype, ctx)
            if isinstance(v[0], np.ndarray) and 0 in v[0].shape
            else v
        )
        for k, v in batch.items()
    }
    return batch 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:18,代碼來源:parallelized_loader.py

示例4: _batchify

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import Context [as 別名]
def _batchify(data):
    """
    Collate data into batch. Use shared memory for stacking.
    :param data: a list of array, with layout of 'NTC'.
    :return either x  and x's unpadded lengths, or x, x's unpadded lengths, y and y's unpadded lengths
            if labels are not supplied.
    """

    # input layout is NTC
    keys, inputs, labels = [item[0] for item in data], [item[1] for item in data], \
                           [item[2] for item in data]

    if len(data) > 1:
        max_data_len = max([seq.shape[0] for seq in inputs])
        max_labels_len = 0 if not labels else max([seq.shape[0] for seq in labels])
    else:
        max_data_len = inputs[0].shape[0]
        max_labels_len = 0 if not labels else labels[0].shape[0]

    x_lens = [item.shape[0] for item in inputs]
    y_lens = [item.shape[0] for item in labels]

    for i, seq in enumerate(inputs):
        pad_len = max_data_len - seq.shape[0]
        inputs[i] = np.pad(seq, ((0, pad_len), (0, 0)), 'constant', constant_values=0)
        labels[i] = np.pad(labels[i], (0, max_labels_len - labels[i].shape[0]),
                           'constant', constant_values=-1)

    inputs = np.asarray(inputs, dtype=np.float32)
    if labels is not None:
        labels = np.asarray(labels, dtype=np.float32)
    inputs = inputs.transpose((1, 0, 2))
    labels = labels.transpose((1, 0))

    return (nd.array(inputs, dtype=inputs.dtype, ctx=context.Context('cpu_shared', 0)),
            nd.array(x_lens, ctx=context.Context('cpu_shared', 0))) \
        if labels is None else (
        nd.array(inputs, dtype=inputs.dtype, ctx=context.Context('cpu_shared', 0)),
        nd.array(x_lens, ctx=context.Context('cpu_shared', 0)),
        nd.array(labels, dtype=labels.dtype, ctx=context.Context('cpu_shared', 0)),
        nd.array(y_lens, ctx=context.Context('cpu_shared', 0))) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:43,代碼來源:test_gluon_data.py

示例5: load

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import Context [as 別名]
def load(prefix, epoch, load_optimizer_states=False, **kwargs):
        """Create a model from previously saved checkpoint.

        Parameters
        ----------
        prefix : str
            path prefix of saved model files. You should have
            "prefix-symbol.json", "prefix-xxxx.params", and
            optionally "prefix-xxxx.states", where xxxx is the
            epoch number.
        epoch : int
            epoch to load.
        load_optimizer_states : bool
            whether to load optimizer states. Checkpoint needs
            to have been made with save_optimizer_states=True.
        data_names : list of str
            Default is `('data')` for a typical model used in image classification.
        label_names : list of str
            Default is `('softmax_label')` for a typical model used in image
            classification.
        logger : Logger
            Default is `logging`.
        context : Context or list of Context
            Default is `cpu()`.
        work_load_list : list of number
            Default `None`, indicating uniform workload.
        fixed_param_names: list of str
            Default `None`, indicating no network parameters are fixed.
        """
        sym, args, auxs = load_checkpoint(prefix, epoch)
        mod = Module(symbol=sym, **kwargs)
        mod._arg_params = args
        mod._aux_params = auxs
        mod.params_initialized = True
        if load_optimizer_states:
            mod._preload_opt_states = '%s-%04d.states'%(prefix, epoch)
        return mod 
開發者ID:tonysy,項目名稱:Deep-Feature-Flow-Segmentation,代碼行數:39,代碼來源:module.py

示例6: tsn_mp_batchify_fn

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import Context [as 別名]
def tsn_mp_batchify_fn(data):
    """Collate data into batch. Use shared memory for stacking.
    Modify default batchify function for temporal segment networks.
    Change `nd.stack` to `nd.concat` since batch dimension already exists.
    """
    if isinstance(data[0], nd.NDArray):
        return nd.concat(*data, dim=0)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [tsn_mp_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        return nd.array(data, dtype=data.dtype,
                        ctx=context.Context('cpu_shared', 0)) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:16,代碼來源:dataloader.py

示例7: load

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import Context [as 別名]
def load(prefix, epoch, load_optimizer_states=False, **kwargs):
        """Creates a model from previously saved checkpoint.

        Parameters
        ----------
        prefix : str
            path prefix of saved model files. You should have
            "prefix-symbol.json", "prefix-xxxx.params", and
            optionally "prefix-xxxx.states", where xxxx is the
            epoch number.
        epoch : int
            epoch to load.
        load_optimizer_states : bool
            whether to load optimizer states. Checkpoint needs
            to have been made with save_optimizer_states=True.
        data_names : list of str
            Default is `('data')` for a typical model used in image classification.
        label_names : list of str
            Default is `('softmax_label')` for a typical model used in image
            classification.
        logger : Logger
            Default is `logging`.
        context : Context or list of Context
            Default is ``cpu()``.
        work_load_list : list of number
            Default ``None``, indicating uniform workload.
        fixed_param_names: list of str
            Default ``None``, indicating no network parameters are fixed.
        """
        sym, args, auxs = load_checkpoint(prefix, epoch)
        mod = DetModule(symbol=sym, **kwargs)
        mod._arg_params = args
        mod._aux_params = auxs
        mod.params_initialized = True
        if load_optimizer_states:
            mod._preload_opt_states = '%s-%04d.states'%(prefix, epoch)
        return mod 
開發者ID:TuSimple,項目名稱:simpledet,代碼行數:39,代碼來源:detection_module.py

示例8: reduce_ndarray

# 需要導入模塊: from mxnet import context [as 別名]
# 或者: from mxnet.context import Context [as 別名]
def reduce_ndarray(data):
        """Reduce ndarray to shared memory handle"""
        # keep a local ref before duplicating fd
        data = data.as_in_context(context.Context("cpu_shared", 0))
        pid, fd, shape, dtype = data._to_shared_mem()
        fd = multiprocessing.reduction.DupFd(fd)
        return rebuild_ndarray, (pid, fd, shape, dtype) 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:9,代碼來源:parallelized_loader.py


注:本文中的mxnet.context.Context方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。