本文整理匯總了Python中mxnet.__version__方法的典型用法代碼示例。如果您正苦於以下問題:Python mxnet.__version__方法的具體用法?Python mxnet.__version__怎麽用?Python mxnet.__version__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet
的用法示例。
在下文中一共展示了mxnet.__version__方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_mxnet
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def check_mxnet():
print('----------MXNet Info-----------')
try:
import mxnet
print('Version :', mxnet.__version__)
mx_dir = os.path.dirname(mxnet.__file__)
print('Directory :', mx_dir)
commit_hash = os.path.join(mx_dir, 'COMMIT_HASH')
with open(commit_hash, 'r') as f:
ch = f.read().strip()
print('Commit Hash :', ch)
except ImportError:
print('No MXNet installed.')
except IOError:
print('Hashtag not found. Not installed from pre-built package.')
except Exception as e:
import traceback
if not isinstance(e, IOError):
print("An error occured trying to import mxnet.")
print("This is very likely due to missing missing or incompatible library files.")
print(traceback.format_exc())
示例2: check_version
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def check_version(min_version, warning_only=False):
"""Check the version of gluoncv satisfies the provided minimum version.
An exception is thrown if the check does not pass.
Parameters
----------
min_version : str
Minimum version
warning_only : bool
Printing a warning instead of throwing an exception.
"""
from .. import __version__
from distutils.version import LooseVersion
bad_version = LooseVersion(__version__) < LooseVersion(min_version)
if bad_version:
msg = 'Installed GluonCV version (%s) does not satisfy the ' \
'minimum required version (%s)'%(__version__, min_version)
if warning_only:
warnings.warn(msg)
else:
raise AssertionError(msg)
示例3: _require_mxnet_version
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def _require_mxnet_version(mx_version, max_mx_version='2.0.0'):
try:
import mxnet as mx
from distutils.version import LooseVersion
if LooseVersion(mx.__version__) < LooseVersion(mx_version) or \
LooseVersion(mx.__version__) >= LooseVersion(max_mx_version):
version_str = '>={},<{}'.format(mx_version, max_mx_version)
msg = (
"Legacy mxnet-mkl=={0} detected, some modules may not work properly. "
"mxnet-mkl{1} is required. You can use pip to upgrade mxnet "
"`pip install -U 'mxnet-mkl{1}'` "
"or `pip install -U 'mxnet-cu100mkl{1}'`\
").format(mx.__version__, version_str)
raise RuntimeError(msg)
except ImportError:
raise ImportError(
"Unable to import dependency mxnet. "
"A quick tip is to install via "
"`pip install 'mxnet-cu100mkl<{}'`. "
"please refer to https://gluon-cv.mxnet.io/#installation for details.".format(
max_mx_version))
示例4: update_metric
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def update_metric(self, eval_metric, labels, pre_sliced=False):
"""Evaluates and accumulates evaluation metric on outputs of the last forward computation.
See Also
----------
:meth:`BaseModule.update_metric`.
Parameters
----------
eval_metric : EvalMetric
Evaluation metric to use.
labels : list of NDArray if `pre_sliced` parameter is set to `False`,
list of lists of NDArray otherwise. Typically `data_batch.label`.
pre_sliced: bool
Whether the labels are already sliced per device (default: False).
"""
if mxnet.__version__ >= "1.3.0":
self._exec_group.update_metric(eval_metric, labels, pre_sliced)
else:
self._exec_group.update_metric(eval_metric, labels)
示例5: update
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def update(self):
"""Update parameters according to the installed optimizer and the gradients computed
in the previous forward-backward batch.
"""
assert self.binded and self.params_initialized and self.optimizer_initialized
self._params_dirty = True
if self._update_on_kvstore:
if int(mx.__version__[0]) == 1:
_update_params_on_kvstore(self._exec_group.param_arrays,
self._exec_group.grad_arrays,
self._kvstore,
self._exec_group.param_names)
else:
_update_params_on_kvstore(self._exec_group.param_arrays,
self._exec_group.grad_arrays,
self._kvstore)
else:
_update_params(self._exec_group.param_arrays,
self._exec_group.grad_arrays,
updater=self._updater,
num_device=len(self._context),
kvstore=self._kvstore)
示例6: check_mxnet_version
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def check_mxnet_version(min_ver):
if not int(os.environ.get('UPDATE_MXNET_FOR_ONNX_EXPORTER', '1')):
print("Env var set to not upgrade MxNet for ONNX exporter. Skipping.")
return False
try:
print("Checking if MxNet is installed.")
import mxnet as mx
except ImportError:
print("MxNet is not installed. Installing version from requirements.txt")
return False
ver = float(re.match(extract_major_minor, mx.__version__).group(1))
min_ver = float(re.match(extract_major_minor, min_ver).group(1))
if ver < min_ver:
print("MxNet is installed, but installed version (%s) is older than expected (%s). Upgrading." % (str(ver).rstrip('0'), str(min_ver).rstrip('0')))
return False
print("Installed MxNet version (%s) meets the requirement of >= (%s). No need to install." % (str(ver).rstrip('0'), str(min_ver).rstrip('0')))
return True
示例7: try_import_mxnet
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def try_import_mxnet():
mx_version = '1.4.1'
try:
import mxnet as mx
from distutils.version import LooseVersion
if LooseVersion(mx.__version__) < LooseVersion(mx_version):
msg = (
"Legacy mxnet-mkl=={} detected, some new modules may not work properly. "
"mxnet-mkl>={} is required. You can use pip to upgrade mxnet "
"`pip install mxnet-mkl --pre --upgrade` "
"or `pip install mxnet-cu90mkl --pre --upgrade`").format(mx.__version__, mx_version)
raise ImportError(msg)
except ImportError:
raise ImportError(
"Unable to import dependency mxnet. "
"A quick tip is to install via `pip install mxnet-mkl/mxnet-cu90mkl --pre`. ")
示例8: try_import_gluonnlp
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def try_import_gluonnlp():
try:
import gluonnlp
# TODO After 1.0 is supported,
# we will remove the checking here and use gluonnlp.utils.check_version instead.
from pkg_resources import parse_version # pylint: disable=import-outside-toplevel
gluonnlp_version = parse_version(gluonnlp.__version__)
assert gluonnlp_version >= parse_version('0.8.1') and\
gluonnlp_version <= parse_version('0.8.3'), \
'Currently, we only support 0.8.1<=gluonnlp<=0.8.3'
except ImportError:
raise ImportError(
"Unable to import dependency gluonnlp. The NLP model won't be available "
"without installing gluonnlp. "
"A quick tip is to install via `pip install gluonnlp==0.8.1`. ")
return gluonnlp
示例9: check_pip
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def check_pip():
print('------------Pip Info-----------')
try:
import pip
print('Version :', pip.__version__)
print('Directory :', os.path.dirname(pip.__file__))
except ImportError:
print('No corresponding pip install for current python.')
示例10: log_sockeye_version
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def log_sockeye_version(logger):
from sockeye import __version__, __file__
try:
from sockeye.git_version import git_hash
except ImportError:
git_hash = "unknown"
logger.info("Sockeye version %s, commit %s, path %s", __version__, git_hash, __file__)
示例11: log_mxnet_version
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def log_mxnet_version(logger):
from mxnet import __version__, __file__
logger.info("MXNet version %s, path %s", __version__, __file__)
示例12: get_default_conda_env
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def get_default_conda_env():
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
pip_deps = ["mxnet=={}".format(mx.__version__)]
return _mlflow_conda_env(additional_pip_deps=pip_deps)
示例13: __init__
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import __version__ [as 別名]
def __init__(self, config, model, criterion, ctx, sample_input):
config['trainer']['output_dir'] = os.path.join(str(pathlib.Path(os.path.abspath(__name__)).parent),
config['trainer']['output_dir'])
config['name'] = config['name'] + '_' + model.model_name
self.save_dir = os.path.join(config['trainer']['output_dir'], config['name'])
self.checkpoint_dir = os.path.join(self.save_dir, 'checkpoint')
self.alphabet = config['dataset']['alphabet']
if config['trainer']['resume_checkpoint'] == '' and config['trainer']['finetune_checkpoint'] == '':
shutil.rmtree(self.save_dir, ignore_errors=True)
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
# 保存本次實驗的alphabet 到模型保存的地方
save(list(self.alphabet), os.path.join(self.save_dir, 'dict.txt'))
self.global_step = 0
self.start_epoch = 0
self.config = config
self.model = model
self.criterion = criterion
# logger and tensorboard
self.tensorboard_enable = self.config['trainer']['tensorboard']
self.epochs = self.config['trainer']['epochs']
self.display_interval = self.config['trainer']['display_interval']
if self.tensorboard_enable:
from mxboard import SummaryWriter
self.writer = SummaryWriter(self.save_dir, verbose=False)
self.logger = setup_logger(os.path.join(self.save_dir, 'train.log'))
self.logger.info(pformat(self.config))
self.logger.info(self.model)
# device set
self.ctx = ctx
mx.random.seed(2) # 設置隨機種子
self.logger.info('train with mxnet: {} and device: {}'.format(mx.__version__, self.ctx))
self.metrics = {'val_acc': 0, 'train_loss': float('inf'), 'best_model': ''}
schedule = self._initialize('lr_scheduler', mx.lr_scheduler)
optimizer = self._initialize('optimizer', mx.optimizer, lr_scheduler=schedule)
self.trainer = gluon.Trainer(self.model.collect_params(), optimizer=optimizer)
if self.config['trainer']['resume_checkpoint'] != '':
self._laod_checkpoint(self.config['trainer']['resume_checkpoint'], resume=True)
elif self.config['trainer']['finetune_checkpoint'] != '':
self._laod_checkpoint(self.config['trainer']['finetune_checkpoint'], resume=False)
if self.tensorboard_enable:
try:
# add graph
from mxnet.gluon import utils as gutils
self.model(sample_input)
self.writer.add_graph(model)
except:
self.logger.error(traceback.format_exc())
self.logger.warn('add graph to tensorboard failed')