本文整理匯總了Python中mxnet.NDArray方法的典型用法代碼示例。如果您正苦於以下問題:Python mxnet.NDArray方法的具體用法?Python mxnet.NDArray怎麽用?Python mxnet.NDArray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet
的用法示例。
在下文中一共展示了mxnet.NDArray方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: update
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def update(self, labels, preds):
"""
Updates the internal evaluation result.
Parameters
----------
labels : list of `NDArray`
The labels of the data.
preds : list of `NDArray`
Predicted values.
"""
det_bboxes = []
det_ids = []
det_scores = []
for x_rr, y in zip(preds, labels):
bboxes = x_rr.slice_axis(axis=-1, begin=0, end=4)
ids = x_rr.slice_axis(axis=-1, begin=4, end=5).squeeze(axis=2)
scores = x_rr.slice_axis(axis=-1, begin=5, end=6).squeeze(axis=2)
det_ids.append(ids)
det_scores.append(scores)
# clip to image size
det_bboxes.append(bboxes.clip(0, self.img_height))
self.update2(det_bboxes, det_ids, det_scores)
示例2: forward
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def forward(self, graph, feat):
r"""Compute APPNP layer.
Parameters
----------
graph : DGLGraph
The graph.
feat : mx.NDArray
The input feature of shape :math:`(N, *)` :math:`N` is the
number of nodes, and :math:`*` could be of any shape.
Returns
-------
mx.NDArray
The output feature of shape :math:`(N, *)` where :math:`*`
should be the same as input shape.
"""
with graph.local_scope():
norm = mx.nd.power(mx.nd.clip(
graph.in_degrees().astype(feat.dtype), a_min=1, a_max=float("inf")), -0.5)
shp = norm.shape + (1,) * (feat.ndim - 1)
norm = norm.reshape(shp).as_in_context(feat.context)
feat_0 = feat
for _ in range(self._k):
# normalization by src node
feat = feat * norm
graph.ndata['h'] = feat
graph.edata['w'] = self.edge_drop(
nd.ones((graph.number_of_edges(), 1), ctx=feat.context))
graph.update_all(fn.u_mul_e('h', 'w', 'm'),
fn.sum('m', 'h'))
feat = graph.ndata.pop('h')
# normalization by dst node
feat = feat * norm
feat = (1 - self._alpha) * feat + self._alpha * feat_0
return feat
示例3: from_mxnet
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def from_mxnet(symbol, arg_params=None, aux_params=None):
"""Convert from MXNet's model into compatible NNVM format.
Parameters
----------
symbol : mxnet.Symbol or mxnet.gluon.HybridBlock
MXNet symbol
arg_params : dict of str to mx.NDArray
The argument parameters in mxnet
aux_params : dict of str to mx.NDArray
The auxiliary parameters in mxnet
Returns
-------
sym : nnvm.Symbol
Compatible nnvm symbol
params : dict of str to tvm.NDArray
The parameter dict to be used by nnvm
"""
try:
import mxnet as mx
except ImportError as e:
raise ImportError('{}. MXNet is required to parse symbols.'.format(e))
if isinstance(symbol, mx.sym.Symbol):
sym = _from_mxnet_impl(symbol, {})
params = {}
arg_params = arg_params if arg_params else {}
aux_params = aux_params if aux_params else {}
for k, v in arg_params.items():
params[k] = tvm.nd.array(v.asnumpy())
for k, v in aux_params.items():
params[k] = tvm.nd.array(v.asnumpy())
elif isinstance(symbol, mx.gluon.HybridBlock):
data = mx.sym.Variable('data')
sym = symbol(data)
sym = _from_mxnet_impl(sym, {})
params = {}
for k, v in symbol.collect_params().items():
params[k] = tvm.nd.array(v.data().asnumpy())
elif isinstance(symbol, mx.gluon.Block):
raise NotImplementedError("Only Hybrid Blocks are supported now.")
else:
msg = "mxnet.Symbol or gluon.HybridBlock expected, got {}".format(type(symbol))
raise ValueError(msg)
if isinstance(sym, list):
sym = _sym.Group(sym)
return sym, params
示例4: update
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def update(self, pred_bboxes, pred_labels, pred_scores, pred_masks, *args, **kwargs):
"""Update internal buffer with latest predictions.
Note that the statistics are not available until you call self.get() to return
the metrics.
Parameters
----------
pred_bboxes : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes with shape `B, N, 4`.
Where B is the size of mini-batch, N is the number of bboxes.
pred_labels : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes labels with shape `B, N`.
pred_scores : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes scores with shape `B, N`.
pred_masks: mxnet.NDArray or numpy.ndarray
Prediction masks with *original* shape `H, W`.
"""
def as_numpy(a):
"""Convert a (list of) mx.NDArray into numpy.ndarray"""
if isinstance(a, mx.nd.NDArray):
a = a.asnumpy()
return a
# mask must be the same as image shape, so no batch dimension is supported
pred_bbox, pred_label, pred_score, pred_mask = [
as_numpy(x) for x in [pred_bboxes, pred_labels, pred_scores, pred_masks]]
# filter out padded detection & low confidence detections
valid_pred = np.where((pred_label >= 0) & (pred_score >= self._score_thresh))[0]
pred_bbox = pred_bbox[valid_pred].astype('float32')
pred_label = pred_label.flat[valid_pred].astype('int32')
pred_score = pred_score.flat[valid_pred].astype('float32')
pred_mask = pred_mask[valid_pred].astype('uint8')
imgid = self._img_ids[self._current_id]
self._current_id += 1
# for each bbox detection in each image
for bbox, label, score, mask in zip(pred_bbox, pred_label, pred_score, pred_mask):
if label not in self.dataset.contiguous_id_to_json:
# ignore non-exist class
continue
if score < self._score_thresh:
continue
category_id = self.dataset.contiguous_id_to_json[label]
# convert [xmin, ymin, xmax, ymax] to [xmin, ymin, w, h]
bbox[2:4] -= bbox[:2]
# coco format full image mask to rle
rle = self._encode_mask(mask)
self._results.append({'image_id': imgid,
'category_id': category_id,
'bbox': list(map(lambda x: float(round(x, 2)), bbox[:4])),
'score': float(round(score, 3)),
'segmentation': rle})
示例5: update
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def update(self, pred_bboxes, pred_labels, pred_scores, *args, **kwargs):
"""Update internal buffer with latest predictions.
Note that the statistics are not available until you call self.get() to return
the metrics.
Parameters
----------
pred_bboxes : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes with shape `B, N, 4`.
Where B is the size of mini-batch, N is the number of bboxes.
pred_labels : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes labels with shape `B, N`.
pred_scores : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes scores with shape `B, N`.
"""
def as_numpy(a):
"""Convert a (list of) mx.NDArray into numpy.ndarray"""
if isinstance(a, (list, tuple)):
out = [x.asnumpy() if isinstance(x, mx.nd.NDArray) else x for x in a]
return np.concatenate(out, axis=0)
elif isinstance(a, mx.nd.NDArray):
a = a.asnumpy()
return a
for pred_bbox, pred_label, pred_score in zip(
*[as_numpy(x) for x in [pred_bboxes, pred_labels, pred_scores]]):
valid_pred = np.where(pred_label.flat >= 0)[0]
pred_bbox = pred_bbox[valid_pred, :].astype(np.float)
pred_label = pred_label.flat[valid_pred].astype(int)
pred_score = pred_score.flat[valid_pred].astype(np.float)
imgid = self._img_ids[self._current_id]
self._current_id += 1
if self._data_shape is not None:
entry = self.dataset.coco.loadImgs(imgid)[0]
orig_height = entry['height']
orig_width = entry['width']
height_scale = float(orig_height) / self._data_shape[0]
width_scale = float(orig_width) / self._data_shape[1]
else:
height_scale, width_scale = (1., 1.)
# for each bbox detection in each image
for bbox, label, score in zip(pred_bbox, pred_label, pred_score):
if label not in self.dataset.contiguous_id_to_json:
# ignore non-exist class
continue
if score < self._score_thresh:
continue
category_id = self.dataset.contiguous_id_to_json[label]
# rescale bboxes
bbox[[0, 2]] *= width_scale
bbox[[1, 3]] *= height_scale
# convert [xmin, ymin, xmax, ymax] to [xmin, ymin, w, h]
bbox[2:4] -= (bbox[:2] - 1)
self._results.append({'image_id': imgid,
'category_id': category_id,
'bbox': bbox[:4].tolist(),
'score': score})
示例6: update
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def update(self, pred_bboxes, pred_labels, pred_scores, *args, **kwargs):
"""Update internal buffer with latest predictions.
Note that the statistics are not available until you call self.get() to return
the metrics.
Parameters
----------
pred_bboxes : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes with shape `B, N, 4`.
Where B is the size of mini-batch, N is the number of bboxes.
pred_labels : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes labels with shape `B, N`.
pred_scores : mxnet.NDArray or numpy.ndarray
Prediction bounding boxes scores with shape `B, N`.
"""
def as_numpy(a):
"""Convert a (list of) mx.NDArray into numpy.ndarray"""
if isinstance(a, (list, tuple)):
out = [x.asnumpy() if isinstance(x, mx.nd.NDArray) else x for x in a]
return np.concatenate(out, axis=0)
elif isinstance(a, mx.nd.NDArray):
a = a.asnumpy()
return a
for pred_bbox, pred_label, pred_score in zip(
*[as_numpy(x) for x in [pred_bboxes, pred_labels, pred_scores]]):
valid_pred = np.where(pred_label.flat >= 0)[0]
pred_bbox = pred_bbox[valid_pred, :].astype(np.float)
pred_label = pred_label.flat[valid_pred].astype(int)
pred_score = pred_score.flat[valid_pred].astype(np.float)
imgid = self._img_ids[self._current_id]
self._current_id += 1
if self._data_shape is not None:
entry = self.dataset.coco.loadImgs(imgid)[0]
orig_height = entry['height']
orig_width = entry['width']
height_scale = orig_height / self._data_shape[0]
width_scale = orig_width / self._data_shape[1]
else:
height_scale, width_scale = (1., 1.)
# for each bbox detection in each image
for bbox, label, score in zip(pred_bbox, pred_label, pred_score):
if label not in self.dataset.contiguous_id_to_json:
# ignore non-exist class
continue
if score < self._score_thresh:
continue
category_id = self.dataset.contiguous_id_to_json[label]
# rescale bboxes
bbox[[0, 2]] *= width_scale
bbox[[1, 3]] *= height_scale
# convert [xmin, ymin, xmax, ymax] to [xmin, ymin, w, h]
bbox[2:4] -= (bbox[:2] - 1)
self._results.append({'image_id': imgid,
'category_id': category_id,
'bbox': bbox[:4].tolist(),
'score': score})