當前位置: 首頁>>代碼示例>>Python>>正文


Python mxnet.NDArray方法代碼示例

本文整理匯總了Python中mxnet.NDArray方法的典型用法代碼示例。如果您正苦於以下問題:Python mxnet.NDArray方法的具體用法?Python mxnet.NDArray怎麽用?Python mxnet.NDArray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mxnet的用法示例。


在下文中一共展示了mxnet.NDArray方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: update

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def update(self, labels, preds):
        """
        Updates the internal evaluation result.

        Parameters
        ----------
        labels : list of `NDArray`
            The labels of the data.
        preds : list of `NDArray`
            Predicted values.
        """
        det_bboxes = []
        det_ids = []
        det_scores = []
        for x_rr, y in zip(preds, labels):
            bboxes = x_rr.slice_axis(axis=-1, begin=0, end=4)
            ids = x_rr.slice_axis(axis=-1, begin=4, end=5).squeeze(axis=2)
            scores = x_rr.slice_axis(axis=-1, begin=5, end=6).squeeze(axis=2)
            det_ids.append(ids)
            det_scores.append(scores)
            # clip to image size
            det_bboxes.append(bboxes.clip(0, self.img_height))
        self.update2(det_bboxes, det_ids, det_scores) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:25,代碼來源:det_metrics.py

示例2: forward

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def forward(self, graph, feat):
        r"""Compute APPNP layer.

        Parameters
        ----------
        graph : DGLGraph
            The graph.
        feat : mx.NDArray
            The input feature of shape :math:`(N, *)` :math:`N` is the
            number of nodes, and :math:`*` could be of any shape.

        Returns
        -------
        mx.NDArray
            The output feature of shape :math:`(N, *)` where :math:`*`
            should be the same as input shape.
        """
        with graph.local_scope():
            norm = mx.nd.power(mx.nd.clip(
                graph.in_degrees().astype(feat.dtype), a_min=1, a_max=float("inf")), -0.5)
            shp = norm.shape + (1,) * (feat.ndim - 1)
            norm = norm.reshape(shp).as_in_context(feat.context)
            feat_0 = feat
            for _ in range(self._k):
                # normalization by src node
                feat = feat * norm
                graph.ndata['h'] = feat
                graph.edata['w'] = self.edge_drop(
                    nd.ones((graph.number_of_edges(), 1), ctx=feat.context))
                graph.update_all(fn.u_mul_e('h', 'w', 'm'),
                                 fn.sum('m', 'h'))
                feat = graph.ndata.pop('h')
                # normalization by dst node
                feat = feat * norm
                feat = (1 - self._alpha) * feat + self._alpha * feat_0
            return feat 
開發者ID:dmlc,項目名稱:dgl,代碼行數:38,代碼來源:appnpconv.py

示例3: from_mxnet

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def from_mxnet(symbol, arg_params=None, aux_params=None):
    """Convert from MXNet's model into compatible NNVM format.

    Parameters
    ----------
    symbol : mxnet.Symbol or mxnet.gluon.HybridBlock
        MXNet symbol

    arg_params : dict of str to mx.NDArray
        The argument parameters in mxnet

    aux_params : dict of str to mx.NDArray
        The auxiliary parameters in mxnet

    Returns
    -------
    sym : nnvm.Symbol
        Compatible nnvm symbol

    params : dict of str to tvm.NDArray
        The parameter dict to be used by nnvm
    """
    try:
        import mxnet as mx
    except ImportError as e:
        raise ImportError('{}. MXNet is required to parse symbols.'.format(e))

    if isinstance(symbol, mx.sym.Symbol):
        sym = _from_mxnet_impl(symbol, {})
        params = {}
        arg_params = arg_params if arg_params else {}
        aux_params = aux_params if aux_params else {}
        for k, v in arg_params.items():
            params[k] = tvm.nd.array(v.asnumpy())
        for k, v in aux_params.items():
            params[k] = tvm.nd.array(v.asnumpy())
    elif isinstance(symbol, mx.gluon.HybridBlock):
        data = mx.sym.Variable('data')
        sym = symbol(data)
        sym = _from_mxnet_impl(sym, {})
        params = {}
        for k, v in symbol.collect_params().items():
            params[k] = tvm.nd.array(v.data().asnumpy())
    elif isinstance(symbol, mx.gluon.Block):
        raise NotImplementedError("Only Hybrid Blocks are supported now.")
    else:
        msg = "mxnet.Symbol or gluon.HybridBlock expected, got {}".format(type(symbol))
        raise ValueError(msg)
    if isinstance(sym, list):
        sym = _sym.Group(sym)
    return sym, params 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:53,代碼來源:mxnet.py

示例4: update

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def update(self, pred_bboxes, pred_labels, pred_scores, pred_masks, *args, **kwargs):
        """Update internal buffer with latest predictions.
        Note that the statistics are not available until you call self.get() to return
        the metrics.

        Parameters
        ----------
        pred_bboxes : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes with shape `B, N, 4`.
            Where B is the size of mini-batch, N is the number of bboxes.
        pred_labels : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes labels with shape `B, N`.
        pred_scores : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes scores with shape `B, N`.
        pred_masks: mxnet.NDArray or numpy.ndarray
            Prediction masks with *original* shape `H, W`.

        """
        def as_numpy(a):
            """Convert a (list of) mx.NDArray into numpy.ndarray"""
            if isinstance(a, mx.nd.NDArray):
                a = a.asnumpy()
            return a

        # mask must be the same as image shape, so no batch dimension is supported
        pred_bbox, pred_label, pred_score, pred_mask = [
            as_numpy(x) for x in [pred_bboxes, pred_labels, pred_scores, pred_masks]]
        # filter out padded detection & low confidence detections
        valid_pred = np.where((pred_label >= 0) & (pred_score >= self._score_thresh))[0]
        pred_bbox = pred_bbox[valid_pred].astype('float32')
        pred_label = pred_label.flat[valid_pred].astype('int32')
        pred_score = pred_score.flat[valid_pred].astype('float32')
        pred_mask = pred_mask[valid_pred].astype('uint8')

        imgid = self._img_ids[self._current_id]
        self._current_id += 1
        # for each bbox detection in each image
        for bbox, label, score, mask in zip(pred_bbox, pred_label, pred_score, pred_mask):
            if label not in self.dataset.contiguous_id_to_json:
                # ignore non-exist class
                continue
            if score < self._score_thresh:
                continue
            category_id = self.dataset.contiguous_id_to_json[label]
            # convert [xmin, ymin, xmax, ymax]  to [xmin, ymin, w, h]
            bbox[2:4] -= bbox[:2]
            # coco format full image mask to rle
            rle = self._encode_mask(mask)
            self._results.append({'image_id': imgid,
                                  'category_id': category_id,
                                  'bbox': list(map(lambda x: float(round(x, 2)), bbox[:4])),
                                  'score': float(round(score, 3)),
                                  'segmentation': rle}) 
開發者ID:Angzz,項目名稱:panoptic-fpn-gluon,代碼行數:55,代碼來源:coco_instance.py

示例5: update

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def update(self, pred_bboxes, pred_labels, pred_scores, *args, **kwargs):
        """Update internal buffer with latest predictions.
        Note that the statistics are not available until you call self.get() to return
        the metrics.

        Parameters
        ----------
        pred_bboxes : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes with shape `B, N, 4`.
            Where B is the size of mini-batch, N is the number of bboxes.
        pred_labels : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes labels with shape `B, N`.
        pred_scores : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes scores with shape `B, N`.

        """
        def as_numpy(a):
            """Convert a (list of) mx.NDArray into numpy.ndarray"""
            if isinstance(a, (list, tuple)):
                out = [x.asnumpy() if isinstance(x, mx.nd.NDArray) else x for x in a]
                return np.concatenate(out, axis=0)
            elif isinstance(a, mx.nd.NDArray):
                a = a.asnumpy()
            return a

        for pred_bbox, pred_label, pred_score in zip(
                *[as_numpy(x) for x in [pred_bboxes, pred_labels, pred_scores]]):
            valid_pred = np.where(pred_label.flat >= 0)[0]
            pred_bbox = pred_bbox[valid_pred, :].astype(np.float)
            pred_label = pred_label.flat[valid_pred].astype(int)
            pred_score = pred_score.flat[valid_pred].astype(np.float)

            imgid = self._img_ids[self._current_id]
            self._current_id += 1
            if self._data_shape is not None:
                entry = self.dataset.coco.loadImgs(imgid)[0]
                orig_height = entry['height']
                orig_width = entry['width']
                height_scale = float(orig_height) / self._data_shape[0]
                width_scale = float(orig_width) / self._data_shape[1]
            else:
                height_scale, width_scale = (1., 1.)
            # for each bbox detection in each image
            for bbox, label, score in zip(pred_bbox, pred_label, pred_score):
                if label not in self.dataset.contiguous_id_to_json:
                    # ignore non-exist class
                    continue
                if score < self._score_thresh:
                    continue
                category_id = self.dataset.contiguous_id_to_json[label]
                # rescale bboxes
                bbox[[0, 2]] *= width_scale
                bbox[[1, 3]] *= height_scale
                # convert [xmin, ymin, xmax, ymax]  to [xmin, ymin, w, h]
                bbox[2:4] -= (bbox[:2] - 1)
                self._results.append({'image_id': imgid,
                                      'category_id': category_id,
                                      'bbox': bbox[:4].tolist(),
                                      'score': score}) 
開發者ID:Angzz,項目名稱:panoptic-fpn-gluon,代碼行數:61,代碼來源:coco_detection.py

示例6: update

# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import NDArray [as 別名]
def update(self, pred_bboxes, pred_labels, pred_scores, *args, **kwargs):
        """Update internal buffer with latest predictions.
        Note that the statistics are not available until you call self.get() to return
        the metrics.

        Parameters
        ----------
        pred_bboxes : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes with shape `B, N, 4`.
            Where B is the size of mini-batch, N is the number of bboxes.
        pred_labels : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes labels with shape `B, N`.
        pred_scores : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes scores with shape `B, N`.

        """
        def as_numpy(a):
            """Convert a (list of) mx.NDArray into numpy.ndarray"""
            if isinstance(a, (list, tuple)):
                out = [x.asnumpy() if isinstance(x, mx.nd.NDArray) else x for x in a]
                return np.concatenate(out, axis=0)
            elif isinstance(a, mx.nd.NDArray):
                a = a.asnumpy()
            return a

        for pred_bbox, pred_label, pred_score in zip(
                *[as_numpy(x) for x in [pred_bboxes, pred_labels, pred_scores]]):
            valid_pred = np.where(pred_label.flat >= 0)[0]
            pred_bbox = pred_bbox[valid_pred, :].astype(np.float)
            pred_label = pred_label.flat[valid_pred].astype(int)
            pred_score = pred_score.flat[valid_pred].astype(np.float)

            imgid = self._img_ids[self._current_id]
            self._current_id += 1
            if self._data_shape is not None:
                entry = self.dataset.coco.loadImgs(imgid)[0]
                orig_height = entry['height']
                orig_width = entry['width']
                height_scale = orig_height / self._data_shape[0]
                width_scale = orig_width / self._data_shape[1]
            else:
                height_scale, width_scale = (1., 1.)
            # for each bbox detection in each image
            for bbox, label, score in zip(pred_bbox, pred_label, pred_score):
                if label not in self.dataset.contiguous_id_to_json:
                    # ignore non-exist class
                    continue
                if score < self._score_thresh:
                    continue
                category_id = self.dataset.contiguous_id_to_json[label]
                # rescale bboxes
                bbox[[0, 2]] *= width_scale
                bbox[[1, 3]] *= height_scale
                # convert [xmin, ymin, xmax, ymax]  to [xmin, ymin, w, h]
                bbox[2:4] -= (bbox[:2] - 1)
                self._results.append({'image_id': imgid,
                                      'category_id': category_id,
                                      'bbox': bbox[:4].tolist(),
                                      'score': score}) 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:61,代碼來源:coco_detection.py


注:本文中的mxnet.NDArray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。