本文整理匯總了Python中mxnet.Context方法的典型用法代碼示例。如果您正苦於以下問題:Python mxnet.Context方法的具體用法?Python mxnet.Context怎麽用?Python mxnet.Context使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mxnet
的用法示例。
在下文中一共展示了mxnet.Context方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: benchmarking
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def benchmarking(net, opt, ctx):
if isinstance(ctx, mx.Context):
ctx = [ctx]
bs = opt.batch_size
num_iterations = opt.num_iterations
input_shape = (bs, 3,) + tuple(input_size)
size = num_iterations * bs
data = mx.random.uniform(-1.0, 1.0, shape=input_shape, ctx=ctx[0], dtype='float32')
dry_run = 5
from tqdm import tqdm
with tqdm(total=size + dry_run * bs) as pbar:
for n in range(dry_run + num_iterations):
if n == dry_run:
tic = time.time()
output = net(data)
output.wait_to_read()
pbar.update(bs)
speed = size / (time.time() - tic)
print('With batch size %d , %d batches, throughput is %f imgs/sec' % (bs, num_iterations, speed))
示例2: _append_arrs
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def _append_arrs(arrs, use_shared_mem=False, expand=False, batch_axis=0):
"""Internal impl for returning appened arrays as list."""
if isinstance(arrs[0], mx.nd.NDArray):
if use_shared_mem:
out = [x.as_in_context(mx.Context('cpu_shared', 0)) for x in arrs]
else:
out = arrs
else:
if use_shared_mem:
out = [mx.nd.array(x, ctx=mx.Context('cpu_shared', 0)) for x in arrs]
else:
out = [mx.nd.array(x) for x in arrs]
# add batch axis
if expand:
out = [x.expand_dims(axis=batch_axis) for x in out]
return out
示例3: _stack_arrs
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def _stack_arrs(arrs, use_shared_mem=False):
"""
Internal imple for stacking arrays.
"""
if isinstance(arrs[0], mx.nd.NDArray):
if use_shared_mem:
out = mx.nd.empty((len(arrs),) + arrs[0].shape, dtype=arrs[0].dtype,
ctx=mx.Context("cpu_shared", 0))
return mx.nd.stack(*arrs, out=out)
else:
return mx.nd.stack(*arrs)
else:
out = np.asarray(arrs)
if use_shared_mem:
return mx.nd.array(out, ctx=mx.Context("cpu_shared", 0))
else:
return mx.nd.array(out)
示例4: seed_rngs
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def seed_rngs(seed: int, ctx: Optional[Union[mx.Context, List[mx.Context]]] = None) -> None:
"""
Seed the random number generators (Python, Numpy and MXNet).
:param seed: The random seed.
:param ctx: Random number generators in MXNet are device specific.
If None, MXNet will set the state of each generator of each device using seed and device id. This will lead
to different results on different devices. If ctx is provided, this function will seed
device-specific generators with a fixed offset. E.g. for 2 devices and seed=13, seed for gpu(0) will be 13,
14 for gpu(1). See https://beta.mxnet.io/api/gluon-related/_autogen/mxnet.random.seed.html.
"""
logger.info("Random seed: %d", seed)
np.random.seed(seed)
random.seed(seed)
if ctx is None:
mx.random.seed(seed, ctx='all')
else:
if isinstance(ctx, mx.Context):
ctx = [ctx]
for i, c in enumerate(ctx):
mx.random.seed(seed + i, ctx=c)
示例5: get_gpu_memory_usage
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def get_gpu_memory_usage(ctx: Union[mx.context.Context, List[mx.context.Context]]) -> Dict[int, Tuple[int, int]]:
"""
Returns used and total memory for GPUs identified by the given context list.
:param ctx: List of MXNet context devices.
:return: Dictionary of device id mapping to a tuple of (memory used, memory total).
"""
if isinstance(ctx, mx.context.Context):
ctx = [ctx]
ctx = [c for c in ctx if c.device_type == 'gpu']
if not ctx:
return {}
memory_data = {} # type: Dict[int, Tuple[int, int]]
for c in ctx:
try:
free, total = mx.context.gpu_memory_info(device_id=c.device_id) # in bytes
used = total - free
memory_data[c.device_id] = (used * 1e-06, total * 1e-06)
except mx.MXNetError:
logger.exception("Failed retrieving memory data for gpu%d", c.device_id)
continue
log_gpu_memory_usage(memory_data)
return memory_data
示例6: train
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def train(train_iter, test_iter, net, loss, trainer, ctx, num_epochs):
"""Train and evaluate a model."""
print('training on', ctx)
if isinstance(ctx, mx.Context):
ctx = [ctx]
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n, m, start = 0.0, 0.0, 0, 0, time.time()
for i, batch in enumerate(train_iter):
Xs, ys, batch_size = _get_batch(batch, ctx)
with autograd.record():
y_hats = [net(X) for X in Xs]
ls = [loss(y_hat, y) for y_hat, y in zip(y_hats, ys)]
for l in ls:
l.backward()
trainer.step(batch_size)
train_l_sum += sum([l.sum().asscalar() for l in ls])
n += sum([l.size for l in ls])
train_acc_sum += sum([(y_hat.argmax(axis=1) == y).sum().asscalar()
for y_hat, y in zip(y_hats, ys)])
m += sum([y.size for y in ys])
test_acc = evaluate_accuracy(test_iter, net, ctx)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
'time %.1f sec'
% (epoch + 1, train_l_sum / n, train_acc_sum / m, test_acc,
time.time() - start))
示例7: batchify
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def batchify(
data: List[dict],
dtype: DType,
multi_processing: bool,
single_process_ctx: Optional[mx.Context] = None,
variable_length: bool = False,
) -> DataBatch:
"""reduce the list of dictionaries to a single dictionary, where values
referenced by identical key are reduced using the stack function"""
return {
key: stack(
data=[item[key] for item in data],
multi_processing=multi_processing,
dtype=dtype,
single_process_ctx=single_process_ctx,
variable_length=variable_length,
)
for key in data[0].keys()
}
示例8: _as_in_context
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def _as_in_context(batch: dict, ctx: mx.Context) -> DataBatch:
"""Move data into new context, should only be in main process."""
assert (
not MPWorkerInfo.worker_process
), "This function is not meant to be used in workers."
batch = {
k: v.as_in_context(ctx) if isinstance(v, nd.NDArray)
# Workaround due to MXNet not being able to handle NDArrays with 0 in shape properly:
else (
stack(v, False, v.dtype, ctx)
if isinstance(v[0], np.ndarray) and 0 in v[0].shape
else v
)
for k, v in batch.items()
}
return batch
示例9: __init__
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def __init__(
self,
dataset: Dataset,
*,
transform: Transformation,
batch_size: int,
ctx: mx.Context,
num_workers: Optional[int] = None,
num_prefetch: Optional[int] = None,
dtype: DType = np.float32,
**kwargs,
) -> None:
super().__init__(
dataset=dataset,
transform=transform,
is_train=True,
batch_size=batch_size,
ctx=ctx,
dtype=dtype,
cyclic=False,
num_workers=num_workers,
num_prefetch=num_prefetch,
shuffle_buffer_length=None,
**kwargs,
)
示例10: initialize_from_array
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def initialize_from_array(
self, input_array: np.ndarray, ctx: mx.Context = get_mxnet_context()
):
r"""
Initialize the representation based on a numpy array.
Parameters
----------
input_array
Numpy array.
ctx
MXNet context.
"""
pass
# noinspection PyMethodOverriding
示例11: __init__
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def __init__(self, num_classes, data_shape, max_iter, dtype):
self.batch_size = data_shape[0]
self.cur_iter = 0
self.max_iter = max_iter
self.dtype = dtype
label = np.random.randint(0, num_classes, [self.batch_size,])
data = np.random.uniform(-1, 1, data_shape)
self.data = mx.nd.array(data, dtype=self.dtype, ctx=mx.Context('cpu_pinned', 0))
self.label = mx.nd.array(label, dtype=self.dtype, ctx=mx.Context('cpu_pinned', 0))
示例12: test_ndarray_copy
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def test_ndarray_copy():
c = mx.nd.array(np.random.uniform(-10, 10, (10, 10)))
d = c.copyto(mx.Context('cpu', 0))
assert np.sum(np.abs(c.asnumpy() != d.asnumpy())) == 0.0
示例13: train
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def train(epoch, ctx):
if isinstance(ctx, mx.Context):
ctx = [ctx]
net.initialize(mx.init.Orthogonal(), ctx=ctx)
# re-initialize conv4's weight to be Orthogonal
net.conv4.initialize(mx.init.Orthogonal(scale=1), force_reinit=True, ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': opt.lr})
loss = gluon.loss.L2Loss()
for i in range(epoch):
train_data.reset()
for batch in train_data:
data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
outputs = []
with ag.record():
for x, y in zip(data, label):
z = net(x)
L = loss(z, y)
L.backward()
outputs.append(z)
trainer.step(batch.data[0].shape[0])
metric.update(label, outputs)
name, acc = metric.get()
metric.reset()
print('training mse at epoch %d: %s=%f'%(i, name, acc))
test(ctx)
net.save_parameters('superres.params')
示例14: test_ndarray_cpu_shared_ctx
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def test_ndarray_cpu_shared_ctx():
ctx = mx.Context('cpu_shared', 0)
res = mx.nd.zeros((1, 2, 3), ctx=ctx)
assert(res.context == ctx)
示例15: test_aggregator
# 需要導入模塊: import mxnet [as 別名]
# 或者: from mxnet import Context [as 別名]
def test_aggregator():
"""aggregate value on muliple devices"""
def check_aggregator(kv, key, key_list, stype):
# devices
num_devs = 4
devs = [mx.Context('cpu', i) for i in range(num_devs)]
# single
vals = [mx.nd.ones(shape, d).tostype(stype) for d in devs]
outs = [mx.nd.empty(shape, d) for d in devs]
kv.push(key, vals)
kv.pull(key, out=outs)
for out in outs:
check_diff_to_scalar(out, num_devs)
# list
vals = [[mx.nd.ones(shape, d).tostype(stype)*2.0 for d in devs]] * len(key_list)
outs = [[mx.nd.empty(shape, d) for d in devs]] * len(key_list)
kv.push(key_list, vals)
kv.pull(key_list, out=outs)
for out in outs:
for o in out:
check_diff_to_scalar(o, num_devs * 2.0)
stypes = ['default', 'row_sparse']
for stype in stypes:
check_aggregator(init_kv(), 3, keys, stype)
check_aggregator(init_kv_with_str(), 'a', str_keys, stype)