本文整理匯總了Python中munkres.make_cost_matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python munkres.make_cost_matrix方法的具體用法?Python munkres.make_cost_matrix怎麽用?Python munkres.make_cost_matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類munkres
的用法示例。
在下文中一共展示了munkres.make_cost_matrix方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_cost_matrix
# 需要導入模塊: import munkres [as 別名]
# 或者: from munkres import make_cost_matrix [as 別名]
def make_cost_matrix(profit_matrix, inversion_function):
"""
Create a cost matrix from a profit matrix by calling
'inversion_function' to invert each value. The inversion
function must take one numeric argument (of any type) and return
another numeric argument which is presumed to be the cost inverse
of the original profit.
This is a static method. Call it like this:
.. python::
cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func)
For example:
.. python::
cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxsize - x)
:Parameters:
profit_matrix : list of lists
The matrix to convert from a profit to a cost matrix
inversion_function : function
The function to use to invert each entry in the profit matrix
:rtype: list of lists
:return: The converted matrix
"""
cost_matrix = []
for row in profit_matrix:
cost_matrix.append([inversion_function(value) for value in row])
return cost_matrix
示例2: make_cost_matrix
# 需要導入模塊: import munkres [as 別名]
# 或者: from munkres import make_cost_matrix [as 別名]
def make_cost_matrix(profit_matrix, inversion_function):
"""
**DEPRECATED**
Please use the module function ``make_cost_matrix()``.
"""
import munkres
return munkres.make_cost_matrix(profit_matrix, inversion_function)
示例3: calc_hungarian_alignment_score
# 需要導入模塊: import munkres [as 別名]
# 或者: from munkres import make_cost_matrix [as 別名]
def calc_hungarian_alignment_score(self, s, t):
"""Calculate the alignment score between the two texts s and t
using the implementation of the Hungarian alignment algorithm
provided in https://pypi.python.org/pypi/munkres/."""
s_toks = get_tokenized_lemmas(s)
t_toks = get_tokenized_lemmas(t)
#print("#### new ppdb calculation ####")
#print(s_toks)
#print(t_toks)
df = pd.DataFrame(index=s_toks, columns=t_toks, data=0.)
for c in s_toks:
for a in t_toks:
df.ix[c, a] = self.compute_paraphrase_score(c, a)
matrix = df.values
cost_matrix = make_cost_matrix(matrix, lambda cost: _max_ppdb_score - cost)
indexes = _munk.compute(cost_matrix)
total = 0.0
for row, column in indexes:
value = matrix[row][column]
total += value
#print(s + ' || ' + t + ' :' + str(indexes) + ' - ' + str(total / float(np.min(matrix.shape))))
# original procedure returns indexes and score - i do not see any use for the indexes as a feature
# return indexes, total / float(np.min(matrix.shape))
return total / float(np.min(matrix.shape))
示例4: score
# 需要導入模塊: import munkres [as 別名]
# 或者: from munkres import make_cost_matrix [as 別名]
def score(self, seq_gt, seq_pred):
seq_gt = self.prep_seq(seq_gt)
seq_pred = self.prep_seq(seq_pred)
m, n = len(seq_gt), len(seq_pred) # length of two sequences
if m == 0:
return 1.
if n == 0:
return 0.
similarities = torch.zeros((m, n))
for i in range(m):
for j in range(n):
a = self.vectors[seq_gt[i]]
b = self.vectors[seq_pred[j]]
a = torch.from_numpy(a)
b = torch.from_numpy(b)
similarities[i, j] = torch.mean(F.cosine_similarity(a.unsqueeze(0), b.unsqueeze(0))).unsqueeze(-1)
similarities = (similarities + 1) / 2
similarities = similarities.numpy()
ass = self.munkres.compute(munkres.make_cost_matrix(similarities))
intersection_score = .0
for a in ass:
intersection_score += similarities[a]
iou_score = intersection_score / (m + n - intersection_score)
return iou_score