本文整理匯總了Python中multiprocessing.cpu_count方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.cpu_count方法的具體用法?Python multiprocessing.cpu_count怎麽用?Python multiprocessing.cpu_count使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.cpu_count方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_graph_stats
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def get_graph_stats(graph_obj_handle, prop='degrees'):
# if prop == 'degrees':
num_cores = multiprocessing.cpu_count()
inputs = [int(i*len(graph_obj_handle)/num_cores) for i in range(num_cores)] + [len(graph_obj_handle)]
res = Parallel(n_jobs=num_cores)(delayed(get_values)(graph_obj_handle, inputs[i], inputs[i+1], prop) for i in range(num_cores))
stat_dict = {}
if 'degrees' in prop:
stat_dict['degrees'] = list(set([d for core_res in res for file_res in core_res for d in file_res['degrees']]))
if 'edge_labels' in prop:
stat_dict['edge_labels'] = list(set([d for core_res in res for file_res in core_res for d in file_res['edge_labels']]))
if 'target_mean' in prop or 'target_std' in prop:
param = np.array([file_res['params'] for core_res in res for file_res in core_res])
if 'target_mean' in prop:
stat_dict['target_mean'] = np.mean(param, axis=0)
if 'target_std' in prop:
stat_dict['target_std'] = np.std(param, axis=0)
return stat_dict
示例2: get_cpuusage
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def get_cpuusage(filename,field_values,which_dict):
cpuusage_file = open(os.path.join(homepath,datadir,filename))
lines = cpuusage_file.read().split("\n")
cpu_dict={}
cpu_count = multiprocessing.cpu_count()
for i in range(0,cpu_count):
cpucore = "cpu"+str(i)
cpu_dict[cpucore] = {}
for eachline in lines:
tokens_split = eachline.split("=")
if(len(tokens_split) == 1):
continue
cpucoresplit = tokens_split[0].split("$")
cpu_dict[cpucoresplit[0]][cpucoresplit[1]] = float(tokens_split[1])
totalresult = 0
for i in range(0,cpu_count):
cpucore = "cpu"+str(i)
which_dict["cpu_usage"] = cpu_dict
Total = cpu_dict[cpucore]["user"] + cpu_dict[cpucore]["nice"] + cpu_dict[cpucore]["system"] + cpu_dict[cpucore]["idle"] + cpu_dict[cpucore]["iowait"] + cpu_dict[cpucore]["irq"] + cpu_dict[cpucore]["softirq"]
idle = cpu_dict[cpucore]["idle"] + cpu_dict[cpucore]["iowait"]
field_values[0] = "CPU"
result = 1 - round(float(idle/Total),4)
totalresult += float(result)
field_values.append(totalresult*100)
示例3: train
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def train(env_id, num_timesteps, seed, policy):
ncpu = multiprocessing.cpu_count()
if sys.platform == 'darwin': ncpu //= 2
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=ncpu,
inter_op_parallelism_threads=ncpu)
config.gpu_options.allow_growth = True #pylint: disable=E1101
tf.Session(config=config).__enter__()
env = VecFrameStack(make_atari_env(env_id, 8, seed), 4)
policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy}[policy]
ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4,
lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
ent_coef=.01,
lr=lambda f : f * 2.5e-4,
cliprange=lambda f : f * 0.1,
total_timesteps=int(num_timesteps * 1.1))
示例4: scrape_recipe_box
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def scrape_recipe_box(scraper, site_str, page_iter, status_interval=50):
if args.append:
recipes = quick_load(site_str)
else:
recipes = {}
start = time.time()
if args.multi:
pool = Pool(cpu_count() * 2)
results = pool.map(scraper, page_iter)
for r in results:
recipes.update(r)
else:
for i in page_iter:
recipes.update(scraper(i))
if i % status_interval == 0:
print('Scraping page {} of {}'.format(i, max(page_iter)))
quick_save(site_str, recipes)
time.sleep(args.sleep)
print('Scraped {} recipes from {} in {:.0f} minutes'.format(
len(recipes), site_str, (time.time() - start) / 60))
quick_save(site_str, recipes)
示例5: test_multiprocessing
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def test_multiprocessing(app):
"""Tests that the number of children we produce is correct"""
# Selects a number at random so we can spot check
num_workers = random.choice(range(2, multiprocessing.cpu_count() * 2 + 1))
process_list = set()
def stop_on_alarm(*args):
for process in multiprocessing.active_children():
process_list.add(process.pid)
process.terminate()
signal.signal(signal.SIGALRM, stop_on_alarm)
signal.alarm(3)
app.run(HOST, PORT, workers=num_workers)
assert len(process_list) == num_workers
示例6: test_multiprocessing_with_blueprint
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def test_multiprocessing_with_blueprint(app):
# Selects a number at random so we can spot check
num_workers = random.choice(range(2, multiprocessing.cpu_count() * 2 + 1))
process_list = set()
def stop_on_alarm(*args):
for process in multiprocessing.active_children():
process_list.add(process.pid)
process.terminate()
signal.signal(signal.SIGALRM, stop_on_alarm)
signal.alarm(3)
bp = Blueprint("test_text")
app.blueprint(bp)
app.run(HOST, PORT, workers=num_workers)
assert len(process_list) == num_workers
# this function must be outside a test function so that it can be
# able to be pickled (local functions cannot be pickled).
示例7: load_config
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def load_config(config_data):
config_data['pywren']['runtime'] = RUNTIME_NAME_DEFAULT
config_data['pywren']['runtime_memory'] = None
if 'runtime_timeout' not in config_data['pywren']:
config_data['pywren']['runtime_timeout'] = RUNTIME_TIMEOUT_DEFAULT
if 'storage_backend' not in config_data['pywren']:
config_data['pywren']['storage_backend'] = 'localhost'
if 'localhost' not in config_data:
config_data['localhost'] = {}
if 'ibm_cos' in config_data and 'private_endpoint' in config_data['ibm_cos']:
del config_data['ibm_cos']['private_endpoint']
if 'workers' in config_data['pywren']:
config_data['localhost']['workers'] = config_data['pywren']['workers']
else:
total_cores = multiprocessing.cpu_count()
config_data['pywren']['workers'] = total_cores
config_data['localhost']['workers'] = total_cores
示例8: get_params_for_mp
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def get_params_for_mp(n_triples):
n_cores = mp.cpu_count()
pool = mp.Pool(n_cores)
avg = n_triples // n_cores
range_list = []
start = 0
for i in range(n_cores):
num = avg + 1 if i < n_triples - avg * n_cores else avg
range_list.append([start, start + num])
start += num
return n_cores, pool, range_list
# input: [(h1, {t1, t2 ...}), (h2, {t3 ...}), ...]
# output: {(h1, t1): paths, (h1, t2): paths, (h2, t3): paths, ...}
示例9: cpu_count
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def cpu_count():
"""Return the number of CPU cores."""
try:
return multiprocessing.cpu_count()
# TODO: remove except clause once we support only python >= 2.6
except NameError:
## This code part is taken from parallel python.
# Linux, Unix and MacOS
if hasattr(os, "sysconf"):
if "SC_NPROCESSORS_ONLN" in os.sysconf_names:
# Linux & Unix
n_cpus = os.sysconf("SC_NPROCESSORS_ONLN")
if isinstance(n_cpus, int) and n_cpus > 0:
return n_cpus
else:
# OSX
return int(os.popen2("sysctl -n hw.ncpu")[1].read())
# Windows
if "NUMBER_OF_PROCESSORS" in os.environ:
n_cpus = int(os.environ["NUMBER_OF_PROCESSORS"])
if n_cpus > 0:
return n_cpus
# Default
return 1
示例10: create_parser
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def create_parser():
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--delimiter')
parser.add_argument('--embedding-size', default=200, type=int)
parser.add_argument('--graph-path')
parser.add_argument('--has-header', action='store_true')
parser.add_argument('--input', '-i', dest='infile', required=True)
parser.add_argument('--log-level', '-l', type=str.upper, default='INFO')
parser.add_argument('--num-walks', default=1, type=int)
parser.add_argument('--model', '-m', dest='model_path')
parser.add_argument('--output', '-o', dest='outfile', required=True)
parser.add_argument('--stats', action='store_true')
parser.add_argument('--undirected', action='store_true')
parser.add_argument('--walk-length', default=10, type=int)
parser.add_argument('--window-size', default=5, type=int)
parser.add_argument('--workers', default=multiprocessing.cpu_count(),
type=int)
return parser
示例11: load_settings
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def load_settings():
with open('SETTINGS.json') as f:
settings = json.load(f)
data_dir = str(settings['competition-data-dir'])
cache_dir = str(settings['data-cache-dir'])
submission_dir = str(settings['submission-dir'])
N_jobs = str(settings['num-jobs'])
N_jobs = multiprocessing.cpu_count() if N_jobs == 'auto' else int(N_jobs)
for d in (cache_dir, submission_dir):
try:
os.makedirs(d)
except:
pass
return Settings(data_dir=data_dir, cache_dir=cache_dir, submission_dir=submission_dir, N_jobs=N_jobs)
示例12: train_reader
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def train_reader(train_list_path):
def reader():
with open(train_list_path, 'r') as f:
lines = f.readlines()
# 打亂數據
np.random.shuffle(lines)
# 開始獲取每張圖像和標簽
for line in lines:
data, label = line.split('\t')
yield data, label
return paddle.reader.xmap_readers(train_mapper, reader, cpu_count(), 1024)
# 測試數據的預處理
示例13: train_reader
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def train_reader(train_list_path, crop_size, resize_size):
father_path = os.path.dirname(train_list_path)
def reader():
with open(train_list_path, 'r') as f:
lines = f.readlines()
# 打亂圖像列表
np.random.shuffle(lines)
# 開始獲取每張圖像和標簽
for line in lines:
img, label = line.split('\t')
img = os.path.join(father_path, img)
yield img, label, crop_size, resize_size
return paddle.reader.xmap_readers(train_mapper, reader, cpu_count(), 102400)
# 測試圖片的預處理
示例14: cpu_count_physical
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def cpu_count_physical():
"""
tries to get the number of physical (ie not virtual) cores
"""
try:
import psutil
return psutil.cpu_count(logical=False)
except:
import multiprocessing
return multiprocessing.cpu_count()
示例15: _n_workers_for_local_cluster
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import cpu_count [as 別名]
def _n_workers_for_local_cluster(calcs):
"""The number of workers used in a LocalCluster
An upper bound is set at the cpu_count or the number of calcs submitted,
depending on which is smaller. This is to prevent more workers from
being started than needed (but also to prevent too many workers from
being started in the case that a large number of calcs are submitted).
"""
return min(cpu_count(), len(calcs))