本文整理匯總了Python中multiprocessing.Value方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.Value方法的具體用法?Python multiprocessing.Value怎麽用?Python multiprocessing.Value使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.Value方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_init
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def test_init():
manager = Manager()
return_dict = manager.dict()
# make server init before worker
server_init = Value('i', False)
serv_p = Process(target=server_func, args=(2, 'test_graph1', server_init))
serv_p.start()
while server_init.value == 0:
time.sleep(1)
work_p1 = Process(target=check_init_func, args=(0, 'test_graph1', return_dict))
work_p2 = Process(target=check_init_func, args=(1, 'test_graph1', return_dict))
work_p1.start()
work_p2.start()
serv_p.join()
work_p1.join()
work_p2.join()
for worker_id in return_dict.keys():
assert return_dict[worker_id] == 0, "worker %d fails" % worker_id
示例2: test_compute
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def test_compute():
manager = Manager()
return_dict = manager.dict()
# make server init before worker
server_init = Value('i', 0)
serv_p = Process(target=server_func, args=(2, 'test_graph3', server_init))
serv_p.start()
while server_init.value == 0:
time.sleep(1)
work_p1 = Process(target=check_compute_func, args=(0, 'test_graph3', return_dict))
work_p2 = Process(target=check_compute_func, args=(1, 'test_graph3', return_dict))
work_p1.start()
work_p2.start()
serv_p.join()
work_p1.join()
work_p2.join()
for worker_id in return_dict.keys():
assert return_dict[worker_id] == 0, "worker %d fails" % worker_id
示例3: test_sync_barrier
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def test_sync_barrier():
manager = Manager()
return_dict = manager.dict()
# make server init before worker
server_init = Value('i', 0)
serv_p = Process(target=server_func, args=(2, 'test_graph4', server_init))
serv_p.start()
while server_init.value == 0:
time.sleep(1)
work_p1 = Process(target=check_sync_barrier, args=(0, 'test_graph4', return_dict))
work_p2 = Process(target=check_sync_barrier, args=(1, 'test_graph4', return_dict))
work_p1.start()
work_p2.start()
serv_p.join()
work_p1.join()
work_p2.join()
for worker_id in return_dict.keys():
assert return_dict[worker_id] == 0, "worker %d fails" % worker_id
示例4: test_copy_shared_mem
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def test_copy_shared_mem():
csr = (spsp.random(num_nodes, num_nodes, density=0.1, format='csr') != 0).astype(np.int64)
gidx = dgl.graph_index.create_graph_index(csr, True)
cond_v = Condition()
shared_v = Value('i', 0)
p1 = Process(target=create_mem, args=(gidx, cond_v, shared_v))
p2 = Process(target=check_mem, args=(gidx, cond_v, shared_v))
p1.start()
p2.start()
p1.join()
p2.join()
# Skip test this file
#if __name__ == '__main__':
# test_copy_shared_mem()
# test_init()
# test_sync_barrier()
# test_compute()
示例5: test_chain_sampling_multidim_model
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def test_chain_sampling_multidim_model(self):
"""Test that sampling from DREAM history for multi-dimensional model when the history is known matches with expected possible samples."""
self.params, self.like = multidmodel()
model = Model(likelihood=self.like, sampled_parameters=self.params)
dream = Dream(model=model)
history_arr = mp.Array('d', [0]*2*dream.total_var_dimension)
n = mp.Value('i', 0)
pydream.Dream_shared_vars.history = history_arr
pydream.Dream_shared_vars.count = n
chains_added_to_history = []
for i in range(2):
start = i*dream.total_var_dimension
end = start+dream.total_var_dimension
chain = dream.draw_from_prior(model.sampled_parameters)
pydream.Dream_shared_vars.history[start:end] = chain
chains_added_to_history.append(chain)
sampled_chains = dream.sample_from_history(nseedchains=2, DEpairs=1, ndimensions=dream.total_var_dimension)
sampled_chains = np.array(sampled_chains)
chains_added_to_history = np.array(chains_added_to_history)
self.assertIs(np.array_equal(chains_added_to_history[chains_added_to_history[:,0].argsort()], sampled_chains[sampled_chains[:,0].argsort()]), True)
示例6: test_history_recording_simple_model
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def test_history_recording_simple_model(self):
"""Test that history in memory matches with that recorded for test one-dimensional model."""
self.param, self.like = onedmodel()
model = Model(self.like, self.param)
step = Dream(model=model, model_name='test_history_recording')
history_arr = mp.Array('d', [0]*4*step.total_var_dimension)
n = mp.Value('i', 0)
nchains = mp.Value('i', 3)
pydream.Dream_shared_vars.history = history_arr
pydream.Dream_shared_vars.count = n
pydream.Dream_shared_vars.nchains = nchains
test_history = np.array([[1], [3], [5], [7]])
for chainpoint in test_history:
for point in chainpoint:
step.record_history(nseedchains=0, ndimensions=step.total_var_dimension, q_new=point, len_history=len(history_arr))
history_arr_np = np.frombuffer(pydream.Dream_shared_vars.history.get_obj())
history_arr_np_reshaped = history_arr_np.reshape(np.shape(test_history))
self.assertIs(np.array_equal(history_arr_np_reshaped, test_history), True)
remove('test_history_recording_DREAM_chain_history.npy')
remove('test_history_recording_DREAM_chain_adapted_crossoverprob.npy')
remove('test_history_recording_DREAM_chain_adapted_gammalevelprob.npy')
示例7: test_history_recording_multidim_model
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def test_history_recording_multidim_model(self):
"""Test that history in memory matches with that recorded for test multi-dimensional model."""
self.param, self.like = multidmodel()
model = Model(self.like, self.param)
dream = Dream(model=model, model_name='test_history_recording')
history_arr = mp.Array('d', [0]*4*dream.total_var_dimension*3)
n = mp.Value('i', 0)
nchains = mp.Value('i', 3)
pydream.Dream_shared_vars.history = history_arr
pydream.Dream_shared_vars.count = n
pydream.Dream_shared_vars.nchains = nchains
test_history = np.array([[[1, 2, 3, 4], [3, 4, 5, 6], [5, 6, 7, 8]], [[7, 8, 9, 10], [9, 12, 18, 20], [11, 14, 18, 8]], [[13, 14, 18, 4], [15, 17, 11, 8], [17, 28, 50, 4]], [[19, 21, 1, 18], [21, 19, 19, 11], [23, 4, 3, 2]]])
for chainpoint in test_history:
for point in chainpoint:
dream.record_history(nseedchains=0, ndimensions=dream.total_var_dimension, q_new=point, len_history=len(history_arr))
history_arr_np = np.frombuffer(pydream.Dream_shared_vars.history.get_obj())
history_arr_np_reshaped = history_arr_np.reshape(np.shape(test_history))
self.assertIs(np.array_equal(history_arr_np_reshaped, test_history), True)
remove('test_history_recording_DREAM_chain_history.npy')
remove('test_history_recording_DREAM_chain_adapted_crossoverprob.npy')
remove('test_history_recording_DREAM_chain_adapted_gammalevelprob.npy')
示例8: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def __init__(self, cfg):
self.__is_use_can_port = cfg['use_can']
# Data for store
self.rx_counter_servo_unit = multiprocessing.Value(ctypes.c_int,0)
self.rx_time_us_diff = multiprocessing.Value(ctypes.c_int,0)
self.rx_button_y = multiprocessing.Value(ctypes.c_bool,False)
self.rx_button_g = multiprocessing.Value(ctypes.c_bool,False)
self.rx_button_r = multiprocessing.Value(ctypes.c_bool,False)
self.rx_actual_angle = multiprocessing.Value(ctypes.c_float,0.0)
self.can_error_count_rx = multiprocessing.Value(ctypes.c_int,0)
# Initialize process
self.__m = multiprocessing.Process(target=self.__process_can, \
args=(cfg['can_name'], \
cfg['can_bustype'], \
cfg['can_bitrate'], \
cfg['can_dbc_path'], \
cfg['can_rx_interval']))
# Start process
self.__m.start()
return
示例9: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def __init__(self, cfg):
# Bridge Tx data from subscribe process to publish process
self.__can_error_count_tx = multiprocessing.Value(ctypes.c_int,0)
# Initialize process
self.__m_pub = multiprocessing.Process(target=self.__process_pub, \
args=(cfg,
cfg['zmq_localhost'], \
cfg['zmq_port_pubsub_devicerx'], \
cfg['zmq_topic_devicerx'], \
cfg['zmq_interval_devicerx']))
self.__m_sub = multiprocessing.Process(target=self.__process_sub, \
args=(cfg,
cfg['zmq_localhost'], \
cfg['zmq_port_pubsub_devicetx'], \
cfg['zmq_topic_devicetx'], \
cfg['zmq_interval_devicetx']))
# Start process
self.__m_pub.start()
self.__m_sub.start()
return
示例10: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def __init__(self, action_dim, observation_dim, **kwargs):
# shared variable that all processes will see
self.crash_flag = Value('i', 0)
self.reset_call_flag = Value('i', 0)
# Communicator Parameters
communicator_setups = {'generic1': {'Communicator': MockCommunicator,
'kwargs': {}},
'generic2': {'Communicator': MockCommunicator,
'kwargs': {}}
}
self._uniform_array_ = np.frombuffer(Array('d', 3).get_obj(), dtype=np.float64)
super().__init__(communicator_setups=communicator_setups,
action_dim=action_dim,
observation_dim=observation_dim,
**kwargs)
示例11: _sync
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def _sync(pack):
"""Simulate a package travelling through the cluster."""
from django_q.cluster import worker, monitor
task_queue = Queue()
result_queue = Queue()
task = SignedPackage.loads(pack)
task_queue.put(task)
task_queue.put("STOP")
worker(task_queue, result_queue, Value("f", -1))
result_queue.put("STOP")
monitor(result_queue)
task_queue.close()
task_queue.join_thread()
result_queue.close()
result_queue.join_thread()
return task["id"]
示例12: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def __init__(self, num_processes, max_queue_size, fn):
"""
Parameters
----------
num_processes: int
Number of processes to spawn
max_queue_size: int
Maximum samples in the queue before processes wait
fn: function
function that generates samples, executed on separate processes.
"""
self.queue = mp.Queue(maxsize=int(max_queue_size))
self.alive = mp.Value(c_bool, False, lock=False)
self.num_proc = num_processes
self.proc = list()
self.fn = fn
示例13: _proc_loop
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def _proc_loop(proc_id, alive, queue, fn):
"""
Thread loop for generating data
Parameters
----------
proc_id: int
Process id
alive: multiprocessing.Value
variable for signaling whether process should continue or not
queue: multiprocessing.Queue
queue for passing data back
fn: function
function object that returns a sample to be pushed into the queue
"""
print("proc {} started".format(proc_id))
try:
while alive.value:
data = fn()
put_success = False
while alive.value and not put_success:
try:
queue.put(data, timeout=0.5)
put_success = True
except QFullExcept:
# print("Queue Full")
pass
except KeyboardInterrupt:
print("W: interrupt received, stopping process {} ...".format(proc_id))
print("Closing process {}".format(proc_id))
queue.close()
示例14: start
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def start(self):
if self.process is None:
self.scanning = Value(c_bool, True)
self.process = Process(target=self._scan, args=(self.scanning,))
self.process.start()
示例15: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Value [as 別名]
def __init__(self, config, executor_id, internal_storage):
self.log_level = os.getenv('PYWREN_LOGLEVEL')
self.config = config
self.executor_id = executor_id
self.storage_config = extract_storage_config(self.config)
self.internal_storage = internal_storage
self.compute_config = extract_compute_config(self.config)
self.is_pywren_function = is_pywren_function()
self.invokers = []
self.remote_invoker = self.config['pywren'].get('remote_invoker', False)
self.workers = self.config['pywren'].get('workers')
logger.debug('ExecutorID {} - Total available workers: {}'
.format(self.executor_id, self.workers))
self.compute_handlers = []
cb = self.compute_config['backend']
regions = self.compute_config[cb].get('region')
if regions and type(regions) == list:
for region in regions:
compute_config = self.compute_config.copy()
compute_config[cb]['region'] = region
compute_handler = Compute(compute_config)
self.compute_handlers.append(compute_handler)
else:
compute_handler = Compute(self.compute_config)
self.compute_handlers.append(compute_handler)
logger.debug('ExecutorID {} - Creating function invoker'.format(self.executor_id))
self.token_bucket_q = Queue()
self.pending_calls_q = Queue()
self.running_flag = Value('i', 0)
self.ongoing_activations = 0
self.job_monitor = JobMonitor(self.config, self.internal_storage, self.token_bucket_q)