本文整理匯總了Python中multiprocessing.Pool方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.Pool方法的具體用法?Python multiprocessing.Pool怎麽用?Python multiprocessing.Pool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.Pool方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: model_selection
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def model_selection(self, graphs, targets,
n_iter=30, subsample_size=None):
"""model_selection_randomized."""
param_distr = {"r": list(range(1, 5)), "d": list(range(0, 10))}
if subsample_size:
graphs, targets = subsample(
graphs, targets, subsample_size=subsample_size)
pool = mp.Pool()
scores = pool.map(_eval, [(graphs, targets, param_distr)] * n_iter)
pool.close()
pool.join()
best_params = max(scores)[1]
logger.debug("Best parameters:\n%s" % (best_params))
self = EdenEstimator(**best_params)
return self
示例2: score_samples
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def score_samples(kdes, samples, preds, n_jobs=None):
"""
TODO
:param kdes:
:param samples:
:param preds:
:param n_jobs:
:return:
"""
if n_jobs is not None:
p = mp.Pool(n_jobs)
else:
p = mp.Pool()
results = np.asarray(
p.map(
score_point,
[(x, kdes[i]) for x, i in zip(samples, preds)]
)
)
p.close()
p.join()
return results
示例3: add_tasks
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def add_tasks(thread_task_list, identifier=None):
"""
Execute several functions (threads, processes) in parallel.
@type thread_task_list: list of TaskThread
@return: a list of respective return values
"""
assert isinstance(thread_task_list, list)
if identifier is None:
identifier = len(AsyncParallel.task_handler_list)
# creates a pool of workers, add all tasks to the pool
if AsyncParallel.pool is None:
AsyncParallel.pool = mp.Pool(processes=AsyncParallel.max_processes)
if identifier not in AsyncParallel.task_handler_list:
AsyncParallel.task_handler_list[identifier] = []
for task in thread_task_list:
assert isinstance(task, TaskThread)
AsyncParallel.task_handler_list[identifier].append(AsyncParallel.pool.apply_async(task.fun, task.args))
return identifier
示例4: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def __init__(self, params_descriptor, MWF=False, stft_backend="auto", multiprocess=True):
""" Default constructor.
:param params_descriptor: Descriptor for TF params to be used.
:param MWF: (Optional) True if MWF should be used, False otherwise.
"""
self._params = load_configuration(params_descriptor)
self._sample_rate = self._params['sample_rate']
self._MWF = MWF
self._tf_graph = tf.Graph()
self._predictor = None
self._input_provider = None
self._builder = None
self._features = None
self._session = None
self._pool = Pool() if multiprocess else None
self._tasks = []
self._params["stft_backend"] = get_backend(stft_backend)
示例5: generate_data_for_registered_problem
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def generate_data_for_registered_problem(problem_name):
"""Generate data for a registered problem."""
tf.logging.info("Generating data for %s.", problem_name)
if FLAGS.num_shards:
raise ValueError("--num_shards should not be set for registered Problem.")
problem = registry.problem(problem_name)
task_id = None if FLAGS.task_id < 0 else FLAGS.task_id
data_dir = os.path.expanduser(FLAGS.data_dir)
tmp_dir = os.path.expanduser(FLAGS.tmp_dir)
if task_id is None and problem.multiprocess_generate:
if FLAGS.task_id_start != -1:
assert FLAGS.task_id_end != -1
task_id_start = FLAGS.task_id_start
task_id_end = FLAGS.task_id_end
else:
task_id_start = 0
task_id_end = problem.num_generate_tasks
pool = multiprocessing.Pool(processes=FLAGS.num_concurrent_processes)
problem.prepare_to_generate(data_dir, tmp_dir)
args = [(problem_name, data_dir, tmp_dir, task_id)
for task_id in range(task_id_start, task_id_end)]
pool.map(generate_data_in_process, args)
else:
problem.generate_data(data_dir, tmp_dir, task_id)
示例6: run
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def run(self, chunksize=2000, parallel=4):
self.validate()
if not self.replacers:
return
chunks = self.get_queryset_chunk_iterator(chunksize)
if parallel == 0:
for objs in chunks:
_run(self, objs)
else:
connection.close()
pool = Pool(processes=parallel)
futures = [pool.apply_async(_run, (self, objs))
for objs in chunks]
for future in futures:
future.get()
pool.close()
pool.join()
示例7: check_headers_parallel
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def check_headers_parallel(self, urls, options=None, callback=None):
if not options:
options= self.options.result()
if Pool:
results = []
freeze_support()
pool = Pool(processes=100)
for url in urls:
result = pool.apply_async(self.check_headers, args=(url, options.get('redirects'), options), callback=callback)
results.append(result)
pool.close()
pool.join()
return results
else:
raise Exception('no parallelism supported')
示例8: generate_experiment
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def generate_experiment(exp_name, n_train_images, n_test_images, mode, class_diameters=(20, 20)):
train_dir = os.path.join(cf.root_dir, exp_name, 'train')
test_dir = os.path.join(cf.root_dir, exp_name, 'test')
if not os.path.exists(train_dir):
os.makedirs(train_dir)
if not os.path.exists(test_dir):
os.makedirs(test_dir)
# enforced distance between object center and image edge.
foreground_margin = np.max(class_diameters) // 2
info = []
info += [[train_dir, six, foreground_margin, class_diameters, mode] for six in range(n_train_images)]
info += [[test_dir, six, foreground_margin, class_diameters, mode] for six in range(n_test_images)]
print('starting creating {} images'.format(len(info)))
pool = Pool(processes=12)
pool.map(multi_processing_create_image, info, chunksize=1)
pool.close()
pool.join()
aggregate_meta_info(train_dir)
aggregate_meta_info(test_dir)
示例9: main
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def main():
start = time.time()
users = ['Carlos_F_Enguix', 'mmtung', 'dremio', 'MongoDB', 'JenWike', 'timberners_lee','ataspinar2', 'realDonaldTrump',
'BarackObama', 'elonmusk', 'BillGates', 'BillClinton','katyperry','KimKardashian']
pool = Pool(8)
for user in pool.map(get_user_info,users):
twitter_user_info.append(user)
cols=['id','fullname','date_joined','location','blog', 'num_tweets','following','followers','likes','lists']
data_frame = pd.DataFrame(twitter_user_info, index=users, columns=cols)
data_frame.index.name = "Users"
data_frame.sort_values(by="followers", ascending=False, inplace=True, kind='quicksort', na_position='last')
elapsed = time.time() - start
print(f"Elapsed time: {elapsed}")
display(data_frame)
示例10: main
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def main(args):
users = []
for arg in args:
users.append(arg)
pool_size = len(users)
if pool_size < 8:
pool = Pool(pool_size)
else:
pool = Pool(8)
for user in pool.map(get_user_info, users):
twitter_user_info.append(user)
cols = ['id', 'fullname', 'date_joined', 'location', 'blog', 'num_tweets', 'following', 'followers', 'likes',
'lists']
data_frame = pd.DataFrame(twitter_user_info, index=users, columns=cols)
data_frame.index.name = "Users"
data_frame.sort_values(by="followers", ascending=False, inplace=True, kind='quicksort', na_position='last')
display(data_frame)
示例11: scrape_recipe_box
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def scrape_recipe_box(scraper, site_str, page_iter, status_interval=50):
if args.append:
recipes = quick_load(site_str)
else:
recipes = {}
start = time.time()
if args.multi:
pool = Pool(cpu_count() * 2)
results = pool.map(scraper, page_iter)
for r in results:
recipes.update(r)
else:
for i in page_iter:
recipes.update(scraper(i))
if i % status_interval == 0:
print('Scraping page {} of {}'.format(i, max(page_iter)))
quick_save(site_str, recipes)
time.sleep(args.sleep)
print('Scraped {} recipes from {} in {:.0f} minutes'.format(
len(recipes), site_str, (time.time() - start) / 60))
quick_save(site_str, recipes)
示例12: get_params_for_mp
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def get_params_for_mp(n_triples):
n_cores = mp.cpu_count()
pool = mp.Pool(n_cores)
avg = n_triples // n_cores
range_list = []
start = 0
for i in range(n_cores):
num = avg + 1 if i < n_triples - avg * n_cores else avg
range_list.append([start, start + num])
start += num
return n_cores, pool, range_list
# input: [(h1, {t1, t2 ...}), (h2, {t3 ...}), ...]
# output: {(h1, t1): paths, (h1, t2): paths, (h2, t3): paths, ...}
示例13: eval_genome
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def eval_genome(genome, config):
"""
This function will be run in parallel by ParallelEvaluator. It takes two
arguments (a single genome and the genome class configuration data) and
should return one float (that genome's fitness).
Note that this function needs to be in module scope for multiprocessing.Pool
(which is what ParallelEvaluator uses) to find it. Because of this, make
sure you check for __main__ before executing any code (as we do here in the
last few lines in the file), otherwise you'll have made a fork bomb
instead of a neuroevolution demo. :)
"""
net = neat.nn.FeedForwardNetwork.create(genome, config)
error = 4.0
for xi, xo in zip(xor_inputs, xor_outputs):
output = net.activate(xi)
error -= (output[0] - xo[0]) ** 2
return error
示例14: multimap
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def multimap(namesToReferences, seqs):
if not hasattr(multimap, "pool"):
multimap.pool = multiprocessing.Pool(processes=misc.cpu_count_physical())
pool = multimap.pool
results = {}
results = dict(pool.map_async(remaps, [(namesToReferences, seq) for seq in seqs]).get(999999))
# results = dict(map(remaps, [(namesToReferences, seq) for seq in seqs]))
return results
示例15: _initialize_members
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pool [as 別名]
def _initialize_members(self, hdfs_app_path, kafkaproducer, conf_type):
# getting parameters.
self._logger = logging.getLogger('SPOT.INGEST.FLOW')
self._hdfs_app_path = hdfs_app_path
self._producer = kafkaproducer
# get script path
self._script_path = os.path.dirname(os.path.abspath(__file__))
# read flow configuration.
conf_file = "{0}/ingest_conf.json".format(os.path.dirname(os.path.dirname(self._script_path)))
conf = json.loads(open(conf_file).read())
self._conf = conf["pipelines"][conf_type]
# set configuration.
self._collector_path = self._conf['collector_path']
self._dsource = 'flow'
self._hdfs_root_path = "{0}/{1}".format(hdfs_app_path, self._dsource)
self._supported_files = self._conf['supported_files']
# create collector watcher
self._watcher = FileWatcher(self._collector_path,self._supported_files)
# Multiprocessing.
self._processes = conf["collector_processes"]
self._ingestion_interval = conf["ingestion_interval"]
self._pool = Pool(processes=self._processes)
# TODO: review re-use of hdfs.client
self._hdfs_client = hdfs.get_client()