本文整理匯總了Python中multiprocessing.Pipe方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.Pipe方法的具體用法?Python multiprocessing.Pipe怎麽用?Python multiprocessing.Pipe使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.Pipe方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def __init__(self, env_fns, spaces=None):
"""
envs: list of gym environments to run in subprocesses
"""
self.waiting = False
self.closed = False
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
for remote in self.work_remotes:
remote.close()
self.remotes[0].send(('get_spaces', None))
observation_space, action_space = self.remotes[0].recv()
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
示例2: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def __init__(self, constructor):
"""Step environment in a separate process for lock free paralellism.
The environment will be created in the external process by calling the
specified callable. This can be an environment class, or a function
creating the environment and potentially wrapping it. The returned
environment should not access global variables.
Args:
constructor: Callable that creates and returns an OpenAI gym environment.
Attributes:
observation_space: The cached observation space of the environment.
action_space: The cached action space of the environment.
"""
self._conn, conn = multiprocessing.Pipe()
self._process = multiprocessing.Process(
target=self._worker, args=(constructor, conn))
atexit.register(self.close)
self._process.start()
self._observ_space = None
self._action_space = None
示例3: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def __init__(self, env_fns, render_interval):
""" Minor addition to SubprocVecEnv, automatically renders environments
envs: list of gym environments to run in subprocesses
"""
self.closed = False
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
for remote in self.work_remotes:
remote.close()
self.remotes[0].send(('get_spaces', None))
self.action_space, self.observation_space = self.remotes[0].recv()
self.render_interval = render_interval
self.render_timer = 0
示例4: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def __init__(self, env_fns):
if np.__version__ == '1.16.0':
warnings.warn("""
NumPy 1.16.0 can cause severe memory leak in chainerrl.envs.MultiprocessVectorEnv.
We recommend using other versions of NumPy.
See https://github.com/numpy/numpy/issues/12793 for details.
""") # NOQA
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = \
[Process(target=worker, args=(work_remote, env_fn))
for (work_remote, env_fn) in zip(self.work_remotes, env_fns)]
for p in self.ps:
p.start()
self.last_obs = [None] * self.num_envs
self.remotes[0].send(('get_spaces', None))
self.action_space, self.observation_space = self.remotes[0].recv()
self.closed = False
示例5: _pipe
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def _pipe(self):
"""On Windows we use a pipe to emulate a Linux style character
buffer."""
if self._evdev:
return None
if not self.__pipe:
target_function = self._get_target_function()
if not target_function:
return None
self.__pipe, child_conn = Pipe(duplex=False)
self._listener = Process(target=target_function,
args=(child_conn,), daemon=True)
self._listener.start()
return self.__pipe
示例6: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def __init__(self, env_fns, spaces=None):
"""
Arguments:
env_fns: iterable of callables - functions that create environments to run in subprocesses. Need to be cloud-pickleable
"""
self.waiting = False
self.closed = False
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
for remote in self.work_remotes:
remote.close()
self.remotes[0].send(('get_spaces', None))
observation_space, action_space = self.remotes[0].recv()
self.viewer = None
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
開發者ID:quantumiracle,項目名稱:Reinforcement_Learning_for_Traffic_Light_Control,代碼行數:24,代碼來源:subproc_vec_env.py
示例7: tcp_server_piped
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def tcp_server_piped(port=19543, use_stderr_logger=False):
"""
TCP server context-manager used for integration tests.
It starts server on localhost/given-port during context-manager start()
and performs server-cleanup during context-manager stop()
:param port: where to start server at
:param use_stderr_logger: configure logging to output into stderr?
:return: pair (server, inter-process-pipe used to control server)
"""
client_process_pipe_endpoint, server_pipe_endpoint = Pipe()
tcp_server = TcpServerPiped(host='localhost', port=port,
pipe_in=server_pipe_endpoint, delay=0,
use_stderr_logger=use_stderr_logger)
tcp_server.start()
time.sleep(0.5) # allow server to boot-up
# returning tcp_server let's you call tcp_server.terminate() to kill server
# for testing dropped TCP connection
yield (tcp_server, client_process_pipe_endpoint)
client_process_pipe_endpoint.send(("shutdown", {}))
tcp_server.join()
# ------------------- TCP server running in separate process ---------------------
示例8: main
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def main():
parent_conn, child_conn = Pipe()
child = Process(target=work, args=(child_conn,))
for item in (
42,
'some string',
{'one': 1},
CustomClass(),
None,
):
print(
"PRNT: send: {}".format(item)
)
parent_conn.send(item)
child.start()
child.join()
開發者ID:PacktPublishing,項目名稱:Expert-Python-Programming_Second-Edition,代碼行數:21,代碼來源:multiprocessing_pipes.py
示例9: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def __init__(self, env_fns, spaces=None):
"""
envs: list of gym environments to run in subprocesses
"""
self.waiting = False
self.closed = False
nenvs = len(env_fns)
self.nenvs = nenvs
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
for remote in self.work_remotes:
remote.close()
self.remotes[0].send(('get_spaces', None))
observation_space, action_space = self.remotes[0].recv()
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
示例10: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def __init__(self, env_fns, horizon, trajectories, seed=0):
"""Launch subprocess workers and store configuration parameters.
:param env_fns (list<()->ResettableEnv>): list of thunks.
:param horizon (int): length of trajectories to search over.
:param trajectories (int): minimum number of trajectories to evaluate.
It will be rounded up to the nearest multiple of len(make_env)."""
super().__init__(horizon, trajectories)
nremotes = len(env_fns)
# Integer ceiling of self.trajectories / nworkers
traj_per_worker = (self.trajectories - 1) // nremotes + 1
pipes = [Pipe() for _ in range(nremotes)]
self.remotes, self.work_remotes = zip(*pipes)
worker_cfgs = zip(self.work_remotes, self.remotes, env_fns)
self.ps = []
for i, (work_remote, remote, dynamic_fn) in enumerate(worker_cfgs):
args = (work_remote, remote, CloudpickleWrapper(dynamic_fn), horizon, traj_per_worker)
process = Process(target=_worker, args=args)
process.daemon = True
# If the main process crashes, we should not cause things to hang
process.start()
self.ps.append(process)
for remote in self.work_remotes:
remote.close()
示例11: run
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def run(engine_factory, source_name, input_queue_maxsize, port, num_tokens,
message_max_size=None):
engine_read, server_write = multiprocessing.Pipe(duplex=False)
# We cannot read from multiprocessing.Pipe without blocking the event
# loop
server_read, engine_write = os.pipe()
local_server = _LocalServer(
num_tokens, input_queue_maxsize, server_write, server_read)
local_server.add_source_consumed(source_name)
engine_process = multiprocessing.Process(
target=_run_engine,
args=(engine_factory, engine_read, server_read, engine_write))
try:
engine_process.start()
os.close(engine_write)
local_server.launch(port, message_max_size)
finally:
local_server.cleanup()
os.close(server_read)
raise Exception('Server stopped')
示例12: test_recursion
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def test_recursion(self):
rconn, wconn = self.Pipe(duplex=False)
self._test_recursion(wconn, [])
time.sleep(DELTA)
result = []
while rconn.poll():
result.append(rconn.recv())
expected = [
[],
[0],
[0, 0],
[0, 1],
[1],
[1, 0],
[1, 1]
]
self.assertEqual(result, expected)
示例13: test_spawn_close
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def test_spawn_close(self):
# We test that a pipe connection can be closed by parent
# process immediately after child is spawned. On Windows this
# would have sometimes failed on old versions because
# child_conn would be closed before the child got a chance to
# duplicate it.
conn, child_conn = self.Pipe()
p = self.Process(target=self._echo, args=(child_conn,))
p.daemon = True
p.start()
child_conn.close() # this might complete before child initializes
msg = latin('hello')
conn.send_bytes(msg)
self.assertEqual(conn.recv_bytes(), msg)
conn.send_bytes(SENTINEL)
conn.close()
p.join()
示例14: test_fd_transfer
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def test_fd_transfer(self):
if self.TYPE != 'processes':
self.skipTest("only makes sense with processes")
conn, child_conn = self.Pipe(duplex=True)
p = self.Process(target=self._writefd, args=(child_conn, b"foo"))
p.daemon = True
p.start()
self.addCleanup(support.unlink, support.TESTFN)
with open(support.TESTFN, "wb") as f:
fd = f.fileno()
if msvcrt:
fd = msvcrt.get_osfhandle(fd)
reduction.send_handle(conn, fd, p.pid)
p.join()
with open(support.TESTFN, "rb") as f:
self.assertEqual(f.read(), b"foo")
示例15: test_large_fd_transfer
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import Pipe [as 別名]
def test_large_fd_transfer(self):
# With fd > 256 (issue #11657)
if self.TYPE != 'processes':
self.skipTest("only makes sense with processes")
conn, child_conn = self.Pipe(duplex=True)
p = self.Process(target=self._writefd, args=(child_conn, b"bar", True))
p.daemon = True
p.start()
self.addCleanup(support.unlink, support.TESTFN)
with open(support.TESTFN, "wb") as f:
fd = f.fileno()
for newfd in range(256, MAXFD):
if not self._is_fd_assigned(newfd):
break
else:
self.fail("could not find an unassigned large file descriptor")
os.dup2(fd, newfd)
try:
reduction.send_handle(conn, newfd, p.pid)
finally:
os.close(newfd)
p.join()
with open(support.TESTFN, "rb") as f:
self.assertEqual(f.read(), b"bar")