本文整理匯總了Python中multiprocessing.JoinableQueue方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.JoinableQueue方法的具體用法?Python multiprocessing.JoinableQueue怎麽用?Python multiprocessing.JoinableQueue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.JoinableQueue方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _producer_multi_threads
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def _producer_multi_threads(queue_task, queue_product, worker_function):
"""
負責在本進程內分發多線程任務
:type queue_task: multiprocessing.JoinableQueue
:type queue_product: multiprocessing.JoinableQueue
:type worker_function: Callable[[Any], Any]
"""
while True:
try:
task = queue_task.get()
if isinstance(task, _QueueEndSignal): # 結束信號
# finally 裏的 task_done() 在break的情況下仍然會被執行
break
if isinstance(task, dict):
result = worker_function(**task)
elif isinstance(task, (tuple, list)):
result = worker_function(*task)
else:
result = worker_function(task)
queue_product.put((task, result))
except:
traceback.print_exc()
finally:
queue_task.task_done()
示例2: scale
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def scale(size, smooth, source, target, concurrency):
canceled = False
jobs = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()
create_processes(size, smooth, jobs, results, concurrency)
todo = add_jobs(source, target, jobs)
try:
jobs.join()
except KeyboardInterrupt: # May not work on Windows
Qtrac.report("canceling...")
canceled = True
copied = scaled = 0
while not results.empty(): # Safe because all jobs have finished
result = results.get_nowait()
copied += result.copied
scaled += result.scaled
return Summary(todo, copied, scaled, canceled)
示例3: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def __init__(self,
tasks_queue_in: multiprocessing.JoinableQueue,
num_proc: int,
pca_numbers: Union[np.ndarray, tuple]) -> None:
"""
Parameters
----------
tasks_queue_in : multiprocessing.queues.JoinableQueue
Input task queue.
num_proc : int
Number of processors.
pca_numbers : np.ndarray, tuple
Principal components for which the residuals are computed.
Returns
-------
NoneType
None
"""
super(PcaTaskCreator, self).__init__(None, tasks_queue_in, None, num_proc)
self.m_pca_numbers = pca_numbers
示例4: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def __init__(self,
tasks_queue_in: multiprocessing.JoinableQueue,
result_queue_in: multiprocessing.JoinableQueue) -> None:
"""
Parameters
----------
tasks_queue_in : multiprocessing.queues.JoinableQueue
The input task queue with instances of :class:`~pynpoint.util.multiproc.TaskInput`.
result_queue_in : multiprocessing.queues.JoinableQueue
The result task queue with instances of :class:`~pynpoint.util.multiproc.TaskResult`.
Returns
-------
NoneType
None
"""
multiprocessing.Process.__init__(self)
self.m_task_queue = tasks_queue_in
self.m_result_queue = result_queue_in
示例5: get_multi_q
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def get_multi_q(self, sentinel='STOP'):
'''
This helps indexq operate in multiprocessing environment without each process having to have it's own IndexQ. It also is a handy way to deal with thread / process safety.
This method will create and return a JoinableQueue object. Additionally, it will kick off a back end process that will monitor the queue, de-queue items and add them to this indexq.
The returned JoinableQueue object can be safely passed to multiple worker processes to populate it with data.
To indicate that you are done writing the data to the queue, pass in the sentinel value ('STOP' by default).
Make sure you call join_indexer() after you are done to close out the queue and join the worker.
'''
self.in_q = JoinableQueue()
self.indexer_process = Process(target=self._indexer_process, args=(self.in_q, sentinel))
self.indexer_process.daemon = False
self.indexer_process.start()
return self.in_q
示例6: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def __init__(
self,
queue: JoinableQueue,
arguments: str,
ports: str,
sudo: bool,
hosts_quantity: int,
results_pool: dict,
):
Process.__init__(self)
self.queue = queue
self.arguments = arguments
self.ports = ports
self.sudo = sudo
self.quantity = hosts_quantity
self.results_pool = results_pool
示例7: test_task_done
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def test_task_done(self):
queue = self.JoinableQueue()
workers = [self.Process(target=self._test_task_done, args=(queue,))
for i in range(4)]
for p in workers:
p.daemon = True
p.start()
for i in range(10):
queue.put(i)
queue.join()
for p in workers:
queue.put(None)
for p in workers:
p.join()
示例8: use_multiprocessing_with_queue2
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def use_multiprocessing_with_queue2():
queue = multiprocessing.JoinableQueue()
num_consumers = multiprocessing.cpu_count() * 2
results_queue = multiprocessing.Queue()
for article in Article.objects.all()[5:8]:
queue.put(article)
for _ in range(num_consumers):
p = multiprocessing.Process(target=save_article_result_with_queue2,
args=(queue, results_queue))
p.start()
queue.join()
results = []
while 1:
try:
updated_article = results_queue.get(timeout=1)
except Empty:
break
results.append(updated_article)
print len(results)
示例9: use_multiprocessing_with_queue2
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def use_multiprocessing_with_queue2():
queue = multiprocessing.JoinableQueue()
num_consumers = multiprocessing.cpu_count() * 2
results_queue = multiprocessing.Queue()
for article in Article.objects.all():
queue.put(article)
for _ in range(num_consumers):
p = multiprocessing.Process(target=save_article_result_with_queue2,
args=(queue, results_queue))
p.start()
queue.join()
results = []
while 1:
try:
updated_article = results_queue.get(timeout=1)
except Empty:
break
results.append(updated_article)
print len(results)
示例10: __init__
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def __init__(self, inFile, outFile, processcount=None):
"""
Initiate controller procedure
:param inFile: the file containing the URLs
:param outFile: the output file, "result.txt" by default
"""
try:
self.urllist = deduplicate(FileReader(inFile).read()).result
self.workerCount = int(processcount) if processcount else multiprocessing.cpu_count() * 2
self.taskQ = multiprocessing.JoinableQueue()
self.resultQ = multiprocessing.Queue()
self.workers = []
self.outfile = outFile
self.start()
logging.info("[+] All work done, saving file")
except KeyboardInterrupt:
pass
finally:
self.cleanup()
示例11: _ensure_async
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def _ensure_async(self):
"""
Ensure that the asynchronous execution infrastructure is up
and the worker process is running
"""
if self.queue:
return
self.queue = multiprocessing.JoinableQueue(
maxsize=self.worker_processes_count)
self.result_queue = multiprocessing.Queue()
self.errors_queue = multiprocessing.Queue()
self.done_queue = multiprocessing.Queue()
for process_number in range(self.worker_processes_count):
process = multiprocessing.Process(
target=self.worker_process_main,
args=(process_number,))
process.start()
self.worker_processes.append(process)
示例12: add_evaluator_workers
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def add_evaluator_workers(self):
"""Add evaluator workers
Evaluator workers receive all graph updates, hence are updated.
Each evaluator worker holds an enabled scenario-evaluator and process
every change.
Each worker's scenario-evaluator runs different template scenarios.
Interface to these workers is:
submit_graph_update(..)
submit_start_evaluations(..)
submit_evaluators_reload_templates(..)
"""
if self._evaluator_queues:
raise VitrageError('add_evaluator_workers called more than once')
workers = CONF.evaluator.workers
queues = [multiprocessing.JoinableQueue() for i in range(workers)]
self.add(EvaluatorWorker,
args=(queues, workers),
workers=workers)
self._evaluator_queues = queues
self._all_queues.extend(queues)
示例13: refactor
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def refactor(self, items, write=False, doctests_only=False,
num_processes=1):
if num_processes == 1:
return super(MultiprocessRefactoringTool, self).refactor(
items, write, doctests_only)
try:
import multiprocessing
except ImportError:
raise MultiprocessingUnsupported
if self.queue is not None:
raise RuntimeError("already doing multiple processes")
self.queue = multiprocessing.JoinableQueue()
self.output_lock = multiprocessing.Lock()
processes = [multiprocessing.Process(target=self._child)
for i in range(num_processes)]
try:
for p in processes:
p.start()
super(MultiprocessRefactoringTool, self).refactor(items, write,
doctests_only)
finally:
self.queue.join()
for i in range(num_processes):
self.queue.put(None)
for p in processes:
if p.is_alive():
p.join()
self.queue = None
示例14: refactor
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def refactor(self, items, write=False, doctests_only=False,
num_processes=1):
if num_processes == 1:
return super(MultiprocessRefactoringTool, self).refactor(
items, write, doctests_only)
try:
import multiprocessing
except ImportError:
raise MultiprocessingUnsupported
if self.queue is not None:
raise RuntimeError("already doing multiple processes")
self.queue = multiprocessing.JoinableQueue()
self.output_lock = multiprocessing.Lock()
processes = [multiprocessing.Process(target=self._child)
for i in xrange(num_processes)]
try:
for p in processes:
p.start()
super(MultiprocessRefactoringTool, self).refactor(items, write,
doctests_only)
finally:
self.queue.join()
for i in xrange(num_processes):
self.queue.put(None)
for p in processes:
if p.is_alive():
p.join()
self.queue = None
示例15: _producer_multi_processes
# 需要導入模塊: import multiprocessing [as 別名]
# 或者: from multiprocessing import JoinableQueue [as 別名]
def _producer_multi_processes(queue_task,
queue_product,
threads_per_process,
worker_function):
"""
接收與多進程任務並分發給子線程
:type queue_task: multiprocessing.JoinableQueue
:type queue_product: multiprocessing.JoinableQueue
:type threads_per_process: int
:type worker_function: Callable[[Any], Any]
"""
_queue_task = queue.Queue(maxsize=threads_per_process)
_queue_product = queue.Queue()
pool = [threading.Thread(target=_producer_multi_threads, args=(_queue_task, _queue_product, worker_function))
for _ in range(threads_per_process)]
for t in pool:
t.daemon = True
t.start()
th = threading.Thread(target=_subprocesses_queue_transfer, args=(queue_task, _queue_task))
th.daemon = True
th.start()
th = threading.Thread(target=_subprocesses_queue_transfer, args=(_queue_product, queue_product))
th.daemon = True
th.start()
# 等待所有子線程結束
for t in pool:
t.join()
logger.debug("subthread {} of {} stopped".format(t.name, multiprocessing.current_process().name))
logger.debug("subprocess {} completed".format(multiprocessing.current_process().name))