本文整理匯總了Python中mujoco_py.MjViewer方法的典型用法代碼示例。如果您正苦於以下問題:Python mujoco_py.MjViewer方法的具體用法?Python mujoco_py.MjViewer怎麽用?Python mujoco_py.MjViewer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mujoco_py
的用法示例。
在下文中一共展示了mujoco_py.MjViewer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: render
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def render(self, mode='human'):
''' Render the environment to the screen '''
if self.viewer is None:
self.viewer = MjViewer(self.sim)
# Turn all the geom groups on
self.viewer.vopt.geomgroup[:] = 1
# Set camera if specified
if mode == 'human':
self.viewer.cam.fixedcamid = -1
self.viewer.cam.type = const.CAMERA_FREE
else:
self.viewer.cam.fixedcamid = self.model.camera_name2id(mode)
self.viewer.cam.type = const.CAMERA_FIXED
if self.update_viewer_sim:
self.viewer.update_sim(self.sim)
self.update_viewer_sim = False
self.viewer.render()
示例2: play_trajectory_demo
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def play_trajectory_demo(self, freq=200):
"""
Plays a demo of the loaded trajectory by forcing the model
positions to the ones in the reference trajectory at every step
"""
viewer = mujoco_py.MjViewer(self.sim)
viewer._render_every_frame = True
self.reset_trajectory()
while True:
if self.subtraj_step_no >= self.traj_length:
self.get_next_sub_trajectory()
self.sim.data.qpos[0:15] = np.r_[
self.x_dist + self.subtraj[0, self.subtraj_step_no],
self.subtraj[1:15, self.subtraj_step_no]
]
self.sim.data.qvel[0:14] = self.subtraj[15:29, self.subtraj_step_no]
self.sim.forward()
self.subtraj_step_no += 1
time.sleep(1 / freq)
viewer.render()
示例3: run
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def run(self):
(_, _, obs_rgb_view2) = self.env.reset()
if self.render:
viewer = mujoco_py.MjViewer(self.env.sim)
else:
f, ax = plt.subplots()
im = ax.imshow(obs_rgb_view2)
while True:
self.env.reset()
while True:
# random action selection
action = np.random.choice([0, 1, 2, 3, 4], 6)
# take the random action and observe the reward and next state (2 rgb views and proprioception)
(obs_joint, obs_rgb_view1, obs_rgb_view2), reward, done = self.env.step(action)
# print("action : ", action)
# print("reward : ", reward)
if done:
break
if self.render:
viewer.render()
else:
im.set_data(obs_rgb_view2)
plt.draw()
plt.pause(0.1)
示例4: start_simulation
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def start_simulation(self):
"""
Starts simulation of the test world
"""
model = self.world.get_model(mode="mujoco_py")
self.sim = MjSim(model)
if self.render:
self.viewer = MjViewer(self.sim)
self.sim_state = self.sim.get_state()
# For gravity correction
gravity_corrected = ["gripper_z_joint"]
self._gravity_corrected_qvels = [
self.sim.model.get_joint_qvel_addr(x) for x in gravity_corrected
]
self.gripper_z_id = self.sim.model.actuator_name2id("gripper_z")
self.gripper_z_is_low = False
self.gripper_joint_ids = [
self.sim.model.actuator_name2id("gripper_" + x)
for x in self.gripper.joints
]
self.gripper_open_action = self.gripper.format_action([1])
self.gripper_closed_action = self.gripper.format_action(
[-1]
)
self.gripper_is_closed = True
self.object_id = self.sim.model.body_name2id("object")
object_default_pos = self.sim.data.body_xpos[self.object_id]
self.object_default_pos = np.array(object_default_pos,
copy=True)
self.reset()
self.simulation_ready = True
示例5: get_img
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def get_img(env_name, seed):
env = make_env(env_name, int(seed), 0, None)
env = AnnotatedGymCompete(env, env_name, 'zoo', '1', 'zoo', '1', None,
resolution=(640, 480), font='times', font_size=24,
draw=False)
env.reset()
env_scene = env.unwrapped.env_scene
env_scene.viewer = mujoco_py.MjViewer(init_width=1000, init_height=750)
env_scene.viewer.start()
env_scene.viewer.set_model(env_scene.model)
env_scene.viewer_setup()
print("Type save to save the image, step to take one timestep.")
running = True
while running:
img = None
while sys.stdin not in select.select([sys.stdin], [], [], 0)[0]:
env.render()
img = env.render(mode='rgb_array')
input = sys.stdin.readline().strip()
if input == 'save':
running = False
elif input == 'step':
action = tuple(np.zeros(space.shape) for space in env.action_space.spaces)
env.step(action)
else:
print(f"Unrecognized command '{input}'")
return img
示例6: _get_viewer
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def _get_viewer(self):
if self.viewer is None:
self.viewer = mujoco_py.MjViewer(self.sim)
self._viewer_setup()
return self.viewer
# Extension methods
# ----------------------------
示例7: _get_viewer
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def _get_viewer(self):
if self.viewer is None:
self.viewer = mujoco_py.MjViewer(self.sim)
self.viewer_setup()
return self.viewer
示例8: mj_viewer_setup
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def mj_viewer_setup(self):
self.viewer = MjViewer(self.sim)
self.viewer.cam.azimuth = 90
self.sim.forward()
self.viewer.cam.distance = 1.5
示例9: mj_viewer_setup
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def mj_viewer_setup(self):
self.viewer = MjViewer(self.sim)
self.viewer.cam.azimuth = -45
self.sim.forward()
self.viewer.cam.distance = 1.0
示例10: mj_viewer_setup
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def mj_viewer_setup(self):
self.viewer = MjViewer(self.sim)
self.viewer.cam.azimuth = 45
self.viewer.cam.distance = 2.0
self.sim.forward()
示例11: _get_viewer
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def _get_viewer(self):
if self.viewer is None:
self.viewer = mujoco_py.MjViewer(visible=True, init_width=500, init_height=500, go_fast=False)
self.viewer.start()
self.viewer.set_model(self.model)
self.viewer_setup()
return self.viewer
示例12: get_viewer
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def get_viewer(self):
if self.viewer is None:
self.viewer = MjViewer(self.sim)
return self.viewer
示例13: _get_viewer
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def _get_viewer(self, mode):
self.viewer = self._viewers.get(mode)
if self.viewer is None:
if mode == 'human':
self.viewer = mujoco_py.MjViewer(self.sim)
elif mode == 'rgb_array' or mode == 'depth_array':
self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, -1)
self.viewer_setup()
self._viewers[mode] = self.viewer
return self.viewer
示例14: get_current_image_obs
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def get_current_image_obs(self):
# print(self._get_viewer)
# print(self._get_viewer())
# self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, -1)
# self.viewer = mujoco_py.MjViewer()
# self.viewer.start()
# self.viewer.set_model(self.model)
# self.viewer_setup()
# self._get_viewer()
# image = self.viewer.get_image()
# pil_image = Image.frombytes('RGB', (image[1], image[2]), image[0])
# pil_image = pil_image.resize((125,125), Image.ANTIALIAS)
# image = np.flipud(np.array(pil_image))
# image = self.render(mode='rgb_array', width=125, height=125)
# transpose to make it have correct ordering of dimensions for pytorch
# image = image.transpose((2,0,1))
# image = np.array(image).astype(np.float32)
# image /= 255.0
image = self.render(mode='rgb_array', width=500, height=500)
image = Image.fromarray(image)
image = image.resize((125,125), PIL.Image.LANCZOS)
image = np.array(image)
image = image.transpose((2,0,1))
image = np.array(image).astype(np.float32)
image /= 255.0
X = np.concatenate([
self.sim.data.qpos.flat[:7],
self.sim.data.qvel.flat[:7],
self.get_body_com('tips_arm'),
self.get_body_com('goal'),
]).copy()
X = (X - self.state_mean) / self.state_std
return image, X
示例15: mj_viewer_setup
# 需要導入模塊: import mujoco_py [as 別名]
# 或者: from mujoco_py import MjViewer [as 別名]
def mj_viewer_setup(self):
self.viewer = MjViewer(self.sim)
self.sim.forward()