本文整理匯總了Python中msgpack.load方法的典型用法代碼示例。如果您正苦於以下問題:Python msgpack.load方法的具體用法?Python msgpack.load怎麽用?Python msgpack.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類msgpack
的用法示例。
在下文中一共展示了msgpack.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def __init__(self, args, log=None):
self.args = args
# build/load vocab and target map
vocab_file = os.path.join(args.output_dir, 'vocab.txt')
target_map_file = os.path.join(args.output_dir, 'target_map.txt')
if not os.path.exists(vocab_file):
data = load_data(self.args.data_dir)
self.target_map = Indexer.build((sample['target'] for sample in data), log=log)
self.target_map.save(target_map_file)
self.vocab = Vocab.build((word for sample in data
for text in (sample['text1'], sample['text2'])
for word in text.split()[:self.args.max_len]),
lower=args.lower_case, min_df=self.args.min_df, log=log,
pretrained_embeddings=args.pretrained_embeddings,
dump_filtered=os.path.join(args.output_dir, 'filtered_words.txt'))
self.vocab.save(vocab_file)
else:
self.target_map = Indexer.load(target_map_file)
self.vocab = Vocab.load(vocab_file)
args.num_classes = len(self.target_map)
args.num_vocab = len(self.vocab)
args.padding = Vocab.pad()
示例2: save_to_file
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def save_to_file(self, filename):
"""Save only the bare minimum needed to reconstruct this CoverageDB.
This serializes the data to a single file and cab reduce the disk footprint of
block coverage significantly (depending on overlap and number of files)."""
if file_backing_disabled:
raise Exception("[!] Can't save/load coverage db files without msgpack. Try `pip install msgpack`")
save_dict = dict()
save_dict["version"] = 1 # serialized covdb version
save_dict["module_name"] = self.module_name
save_dict["module_base"] = self.module_base
save_dict["coverage_files"] = self.coverage_files
# save tighter version of block dict {int: int} vice {int: str}
block_dict_to_save = {}
file_index_map = {filepath: self.coverage_files.index(filepath) for filepath in self.coverage_files}
for block, trace_list in self.block_dict.items():
trace_id_list = [file_index_map[name] for name in trace_list]
block_dict_to_save[block] = trace_id_list
save_dict["block_dict"] = block_dict_to_save
# write packed version to file
with open(filename, "wb") as f:
msgpack.dump(save_dict, f)
self.filename = filename
示例3: __init__
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def __init__(self, args, log=None):
self.args = args
# build/load vocab and target map
vocab_file = os.path.join(args.output_dir, 'vocab.txt')
target_map_file = os.path.join(args.output_dir, 'target_map.txt')
if not os.path.exists(vocab_file):
data = load_data(self.args.data_dir)
self.target_map = Indexer.build((sample['target'] for sample in data), log=log)
self.target_map.save(target_map_file)
self.vocab = Vocab.build((word for sample in data
for text in (sample['text1'], sample['text2'])
for word in text.split()[:self.args.max_len]),
lower=args.lower_case, min_df=self.args.min_df, log=log,
pretrained_embeddings=args.pretrained_embeddings,
dump_filtered=os.path.join(args.output_dir, 'filtered_words.txt'))
self.vocab.save(vocab_file)
else:
self.target_map = Indexer.load(target_map_file)
self.vocab = Vocab.load(vocab_file)
args.num_classes = len(self.target_map)
args.num_vocab = len(self.vocab)
args.padding = Vocab.pad()
示例4: load_embeddings
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_embeddings(self):
"""generate embeddings suited for the current vocab or load previously cached ones."""
assert self.args.pretrained_embeddings
embedding_file = os.path.join(self.args.output_dir, 'embedding.msgpack')
if not os.path.exists(embedding_file):
embeddings = load_embeddings(self.args.pretrained_embeddings, self.vocab,
self.args.embedding_dim, mode=self.args.embedding_mode,
lower=self.args.lower_case)
with open(embedding_file, 'wb') as f:
msgpack.dump(embeddings, f)
else:
with open(embedding_file, 'rb') as f:
embeddings = msgpack.load(f)
return embeddings
示例5: read
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def read(self, stream):
"""Given a readable file descriptor object (something `load`able by
msgpack or json), read the data, and return the Python representation
of the contents. One-shot reader.
"""
return self.reader.load(stream)
示例6: load
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load(self, stream):
return self.decoder.decode(json.load(stream,
object_pairs_hook=OrderedDict))
示例7: load_data
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_data(self):
print('Load train_meta.msgpack...')
meta_file_name = os.path.join(self.spacyDir, 'train_meta.msgpack')
with open(meta_file_name, 'rb') as f:
meta = msgpack.load(f, encoding='utf8')
embedding = torch.Tensor(meta['embedding'])
self.opt['vocab_size'] = embedding.size(0)
self.opt['vocab_dim'] = embedding.size(1)
self.opt['char_vocab_size'] = len(meta['char_vocab'])
return meta['vocab'], meta['char_vocab'], embedding
示例8: load_cpickle
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_cpickle(cls, filename):
"""Load CPICKLE file
Parameters
----------
filename : str
Filename path
Returns
-------
data
"""
cls.file_exists(filename=filename)
try:
import cPickle as pickle
except ImportError:
try:
import pickle
except ImportError:
message = '{name}: Unable to import pickle module.'.format(
name=cls.__class__.__name__
)
cls.logger().exception(message)
raise ImportError(message)
return pickle.load(open(filename, "rb"))
示例9: load_json
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_json(cls, filename):
"""Load JSON file
Parameters
----------
filename : str
Filename path
Returns
-------
data
"""
cls.file_exists(filename=filename)
try:
import ujson as json
except ImportError:
try:
import json
except ImportError:
message = '{name}: Unable to import json module. You can install it with `pip install ujson`.'.format(
name=cls.__class__.__name__
)
cls.logger().exception(message)
raise ImportError(message)
return json.load(open(filename, "r"))
示例10: load_msgpack
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_msgpack(cls, filename):
"""Load MSGPACK file
Parameters
----------
filename : str
Filename path
Returns
-------
data
"""
cls.file_exists(filename=filename)
try:
import msgpack
except ImportError:
message = '{name}: Unable to import msgpack module. You can install it with `pip install msgpack-python`.'.format(
name=cls.__class__.__name__
)
cls.logger().exception(message)
raise ImportError(message)
return msgpack.load(open(filename, "rb"), encoding='utf-8')
示例11: load_marshal
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_marshal(cls, filename):
"""Load MARSHAL file
Parameters
----------
filename : str
Filename path
Returns
-------
data
"""
cls.file_exists(filename=filename)
try:
import marshal
except ImportError:
message = '{name}: Unable to import marshal module. You can install it with `pip install pymarshal`.'.format(
name=cls.__class__.__name__
)
cls.logger().exception(message)
raise ImportError(message)
return marshal.load(open(filename, "rb"))
示例12: load_train_data
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_train_data(opt):
with open(os.path.join(args.train_dir, 'train_meta.msgpack'), 'rb') as f:
meta = msgpack.load(f, encoding='utf8')
embedding = torch.Tensor(meta['embedding'])
opt['vocab_size'] = embedding.size(0)
opt['embedding_dim'] = embedding.size(1)
with open(os.path.join(args.train_dir, 'train_data.msgpack'), 'rb') as f:
data = msgpack.load(f, encoding='utf8')
#data_orig = pd.read_csv(os.path.join(args.train_dir, 'train.csv'))
opt['num_features'] = len(data['context_features'][0][0])
train = {'context': list(zip(
data['context_ids'],
data['context_tags'],
data['context_ents'],
data['context'],
data['context_span'],
data['1st_question'],
data['context_tokenized'])),
'qa': list(zip(
data['question_CID'],
data['question_ids'],
data['context_features'],
data['answer_start'],
data['answer_end'],
data['rationale_start'],
data['rationale_end'],
data['answer_choice'],
data['question'],
data['answer'],
data['question_tokenized']))
}
return train, embedding, opt
示例13: load_dev_data
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_dev_data(opt): # can be extended to true test set
with open(os.path.join(args.dev_dir, 'dev_meta.msgpack'), 'rb') as f:
meta = msgpack.load(f, encoding='utf8')
embedding = torch.Tensor(meta['embedding'])
assert opt['embedding_dim'] == embedding.size(1)
with open(os.path.join(args.dev_dir, 'dev_data.msgpack'), 'rb') as f:
data = msgpack.load(f, encoding='utf8')
#data_orig = pd.read_csv(os.path.join(args.dev_dir, 'dev.csv'))
assert opt['num_features'] == len(data['context_features'][0][0])
dev = {'context': list(zip(
data['context_ids'],
data['context_tags'],
data['context_ents'],
data['context'],
data['context_span'],
data['1st_question'],
data['context_tokenized'])),
'qa': list(zip(
data['question_CID'],
data['question_ids'],
data['context_features'],
data['answer_start'],
data['answer_end'],
data['rationale_start'],
data['rationale_end'],
data['answer_choice'],
data['question'],
data['answer'],
data['question_tokenized']))
}
return dev, embedding
示例14: load_dev_data
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_dev_data(opt): # can be extended to true test set
with open(os.path.join(args.dev_dir, 'dev_meta.msgpack'), 'rb') as f:
meta = msgpack.load(f, encoding='utf8')
embedding = torch.Tensor(meta['embedding'])
assert opt['embedding_dim'] == embedding.size(1)
with open(os.path.join(args.dev_dir, 'dev_data.msgpack'), 'rb') as f:
data = msgpack.load(f, encoding='utf8')
assert opt['num_features'] == len(data['context_features'][0][0]) + opt['explicit_dialog_ctx'] * (opt['use_dialog_act']*3 + 2)
dev = {'context': list(zip(
data['context_ids'],
data['context_tags'],
data['context_ents'],
data['context'],
data['context_span'],
data['1st_question'],
data['context_tokenized'])),
'qa': list(zip(
data['question_CID'],
data['question_ids'],
data['context_features'],
data['answer_start'],
data['answer_end'],
data['answer_choice'],
data['question'],
data['answer'],
data['question_tokenized']))
}
dev_answer = []
for i, CID in enumerate(data['question_CID']):
if len(dev_answer) <= CID:
dev_answer.append([])
dev_answer[CID].append(data['all_answer'][i])
return dev, embedding, dev_answer
示例15: load_train_data
# 需要導入模塊: import msgpack [as 別名]
# 或者: from msgpack import load [as 別名]
def load_train_data(opt):
with open(os.path.join(args.train_dir, 'train_meta.msgpack'), 'rb') as f:
meta = msgpack.load(f, encoding='utf8')
embedding = torch.Tensor(meta['embedding'])
opt['vocab_size'] = embedding.size(0)
opt['embedding_dim'] = embedding.size(1)
with open(os.path.join(args.train_dir, 'train_data.msgpack'), 'rb') as f:
data = msgpack.load(f, encoding='utf8')
#data_orig = pd.read_csv(os.path.join(args.train_dir, 'train.csv'))
opt['num_features'] = len(data['context_features'][0][0])
train = {'context': list(zip(
data['context_ids'],
data['context_tags'],
data['context_ents'],
data['context'],
data['context_span'],
data['1st_question'],
data['context_tokenized'])),
'qa': list(zip(
data['question_CID'],
data['question_ids'],
data['context_features'],
data['answer_start'],
data['answer_end'],
data['answer_choice'],
data['question'],
data['answer'],
data['question_tokenized']))
}
return train, embedding, opt