本文整理匯總了Python中mpmath.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python mpmath.sqrt方法的具體用法?Python mpmath.sqrt怎麽用?Python mpmath.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mpmath
的用法示例。
在下文中一共展示了mpmath.sqrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_ladder_operator_coefficient
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_ladder_operator_coefficient():
# for ell in range(sf.ell_max + 1):
# for m in range(-ell, ell + 1):
# a = math.sqrt(ell * (ell + 1) - m * (m + 1))
# b = sf.ladder_operator_coefficient(ell, m)
# if (m == ell):
# assert b == 0.0
# else:
# assert abs(a - b) / (abs(a) + abs(b)) < 3e-16
for twoell in range(2*sf.ell_max + 1):
for twom in range(-twoell, twoell + 1, 2):
a = math.sqrt(twoell * (twoell + 2) - twom * (twom + 2))/2
b = sf._ladder_operator_coefficient(twoell, twom)
c = sf.ladder_operator_coefficient(twoell/2, twom/2)
if (twom == twoell):
assert b == 0.0 and c == 0.0
else:
assert abs(a - b) / (abs(a) + abs(b)) < 3e-16 and abs(a - c) / (abs(a) + abs(c)) < 3e-16
示例2: compute_a
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def compute_a(n):
"""a_k from DLMF 5.11.6"""
a = [mp.sqrt(2)/2]
for k in range(1, n):
ak = a[-1]/k
for j in range(1, len(a)):
ak -= a[j]*a[-j]/(j + 1)
ak /= a[0]*(1 + mp.mpf(1)/(k + 1))
a.append(ak)
return a
示例3: compute_g
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def compute_g(n):
"""g_k from DLMF 5.11.3/5.11.5"""
a = compute_a(2*n)
g = []
for k in range(n):
g.append(mp.sqrt(2)*mp.rf(0.5, k)*a[2*k])
return g
示例4: eta
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def eta(lam):
"""Function from DLMF 8.12.1 shifted to be centered at 0."""
if lam > 0:
return mp.sqrt(2*(lam - mp.log(lam + 1)))
elif lam < 0:
return -mp.sqrt(2*(lam - mp.log(lam + 1)))
else:
return 0
示例5: _student_t_cdf
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def _student_t_cdf(df, t, dps=None):
if dps is None:
dps = mpmath.mp.dps
with mpmath.workdps(dps):
df, t = mpmath.mpf(df), mpmath.mpf(t)
fac = mpmath.hyp2f1(0.5, 0.5*(df + 1), 1.5, -t**2/df)
fac *= t*mpmath.gamma(0.5*(df + 1))
fac /= mpmath.sqrt(mpmath.pi*df)*mpmath.gamma(0.5*df)
return 0.5 + fac
示例6: _noncentral_chi_pdf
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def _noncentral_chi_pdf(t, df, nc):
res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t))
res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2
return res
示例7: test_log_ndtr_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_log_ndtr_complex(self):
assert_mpmath_equal(sc.log_ndtr,
exception_to_nan(lambda z: mpmath.log(mpmath.erfc(-z/np.sqrt(2.))/2.)),
[ComplexArg(a=complex(-10000, -100),
b=complex(10000, 100))], n=200, dps=300)
示例8: test_j0
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_j0(self):
# The Bessel function at large arguments is j0(x) ~ cos(x + phi)/sqrt(x)
# and at large arguments the phase of the cosine loses precision.
#
# This is numerically expected behavior, so we compare only up to
# 1e8 = 1e15 * 1e-7
assert_mpmath_equal(sc.j0,
mpmath.j0,
[Arg(-1e3, 1e3)])
assert_mpmath_equal(sc.j0,
mpmath.j0,
[Arg(-1e8, 1e8)],
rtol=1e-5)
示例9: test_spherical_jn
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_spherical_jn(self):
def mp_spherical_jn(n, z):
arg = mpmath.mpmathify(z)
out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /
mpmath.sqrt(2*arg/mpmath.pi))
if arg.imag == 0:
return out.real
else:
return out
assert_mpmath_equal(lambda n, z: sc.spherical_jn(int(n), z),
exception_to_nan(mp_spherical_jn),
[IntArg(0, 200), Arg(-1e8, 1e8)],
dps=300)
示例10: test_spherical_jn_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_spherical_jn_complex(self):
def mp_spherical_jn(n, z):
arg = mpmath.mpmathify(z)
out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /
mpmath.sqrt(2*arg/mpmath.pi))
if arg.imag == 0:
return out.real
else:
return out
assert_mpmath_equal(lambda n, z: sc.spherical_jn(int(n.real), z),
exception_to_nan(mp_spherical_jn),
[IntArg(0, 200), ComplexArg()])
示例11: test_spherical_yn
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_spherical_yn(self):
def mp_spherical_yn(n, z):
arg = mpmath.mpmathify(z)
out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /
mpmath.sqrt(2*arg/mpmath.pi))
if arg.imag == 0:
return out.real
else:
return out
assert_mpmath_equal(lambda n, z: sc.spherical_yn(int(n), z),
exception_to_nan(mp_spherical_yn),
[IntArg(0, 200), Arg(-1e10, 1e10)],
dps=100)
示例12: test_spherical_in
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_spherical_in(self):
def mp_spherical_in(n, z):
arg = mpmath.mpmathify(z)
out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /
mpmath.sqrt(2*arg/mpmath.pi))
if arg.imag == 0:
return out.real
else:
return out
assert_mpmath_equal(lambda n, z: sc.spherical_in(int(n), z),
exception_to_nan(mp_spherical_in),
[IntArg(0, 200), Arg()],
dps=200, atol=10**(-278))
示例13: test_spherical_in_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_spherical_in_complex(self):
def mp_spherical_in(n, z):
arg = mpmath.mpmathify(z)
out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /
mpmath.sqrt(2*arg/mpmath.pi))
if arg.imag == 0:
return out.real
else:
return out
assert_mpmath_equal(lambda n, z: sc.spherical_in(int(n.real), z),
exception_to_nan(mp_spherical_in),
[IntArg(0, 200), ComplexArg()])
示例14: test_spherical_kn
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_spherical_kn(self):
def mp_spherical_kn(n, z):
out = (mpmath.besselk(n + mpmath.mpf(1)/2, z) *
mpmath.sqrt(mpmath.pi/(2*mpmath.mpmathify(z))))
if mpmath.mpmathify(z).imag == 0:
return out.real
else:
return out
assert_mpmath_equal(lambda n, z: sc.spherical_kn(int(n), z),
exception_to_nan(mp_spherical_kn),
[IntArg(0, 150), Arg()],
dps=100)
示例15: test_spherical_kn_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import sqrt [as 別名]
def test_spherical_kn_complex(self):
def mp_spherical_kn(n, z):
arg = mpmath.mpmathify(z)
out = (mpmath.besselk(n + mpmath.mpf(1)/2, arg) /
mpmath.sqrt(2*arg/mpmath.pi))
if arg.imag == 0:
return out.real
else:
return out
assert_mpmath_equal(lambda n, z: sc.spherical_kn(int(n.real), z),
exception_to_nan(mp_spherical_kn),
[IntArg(0, 200), ComplexArg()],
dps=200)