當前位置: 首頁>>代碼示例>>Python>>正文


Python mpmath.mpf方法代碼示例

本文整理匯總了Python中mpmath.mpf方法的典型用法代碼示例。如果您正苦於以下問題:Python mpmath.mpf方法的具體用法?Python mpmath.mpf怎麽用?Python mpmath.mpf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mpmath的用法示例。


在下文中一共展示了mpmath.mpf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_d

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def compute_d(K, N):
    """d_{k, n} from DLMF 8.12.12"""
    M = N + 2*K
    d0 = [-mp.mpf(1)/3]
    alpha = compute_alpha(M + 2)
    for n in range(1, M):
        d0.append((n + 2)*alpha[n+2])
    d = [d0]
    g = compute_g(K)
    for k in range(1, K):
        dk = []
        for n in range(M - 2*k):
            dk.append((-1)**k*g[k]*d[0][n] + (n + 2)*d[k-1][n+2])
        d.append(dk)
    for k in range(K):
        d[k] = d[k][:N]
    return d 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:gammainc_asy.py

示例2: gammainc

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def gammainc(a, x, dps=50, maxterms=10**8):
    """Compute gammainc exactly like mpmath does but allow for more
    summands in hypercomb. See

    mpmath/functions/expintegrals.py#L134
    
    in the mpmath github repository.

    """
    with mp.workdps(dps):
        z, a, b = mp.mpf(a), mp.mpf(x), mp.mpf(x)
        G = [z]
        negb = mp.fneg(b, exact=True)

        def h(z):
            T1 = [mp.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b
            return (T1,)

        res = mp.hypercomb(h, [z], maxterms=maxterms)
        return mpf2float(res) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:gammainc_data.py

示例3: zpkfreqz

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def zpkfreqz(z, p, k, worN=None):
    """
    Frequency response of a filter in zpk format, using mpmath.

    This is the same calculation as scipy.signal.freqz, but the input is in
    zpk format, the calculation is performed using mpath, and the results are
    returned in lists instead of numpy arrays.
    """
    if worN is None or isinstance(worN, int):
        N = worN or 512
        ws = [mpmath.pi * mpmath.mpf(j) / N for j in range(N)]
    else:
        ws = worN

    h = []
    for wk in ws:
        zm1 = mpmath.exp(1j * wk)
        numer = _prod([zm1 - t for t in z])
        denom = _prod([zm1 - t for t in p])
        hk = k * numer / denom
        h.append(hk)
    return ws, h 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:24,代碼來源:mpsig.py

示例4: test_rf

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def test_rf(self):
        if LooseVersion(mpmath.__version__) >= LooseVersion("1.0.0"):
            # no workarounds needed
            mppoch = mpmath.rf
        else:
            def mppoch(a, m):
                # deal with cases where the result in double precision
                # hits exactly a non-positive integer, but the
                # corresponding extended-precision mpf floats don't
                if float(a + m) == int(a + m) and float(a + m) <= 0:
                    a = mpmath.mpf(a)
                    m = int(a + m) - a
                return mpmath.rf(a, m)

        assert_mpmath_equal(sc.poch,
                            mppoch,
                            [Arg(), Arg()],
                            dps=400) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:20,代碼來源:test_mpmath.py

示例5: test_boxcox

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def test_boxcox(self):

        def mp_boxcox(x, lmbda):
            x = mpmath.mp.mpf(x)
            lmbda = mpmath.mp.mpf(lmbda)
            if lmbda == 0:
                return mpmath.mp.log(x)
            else:
                return mpmath.mp.powm1(x, lmbda) / lmbda

        assert_mpmath_equal(sc.boxcox,
                            exception_to_nan(mp_boxcox),
                            [Arg(a=0, inclusive_a=False), Arg()],
                            n=200,
                            dps=60,
                            rtol=1e-13) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_mpmath.py

示例6: test_boxcox1p

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def test_boxcox1p(self):

        def mp_boxcox1p(x, lmbda):
            x = mpmath.mp.mpf(x)
            lmbda = mpmath.mp.mpf(lmbda)
            one = mpmath.mp.mpf(1)
            if lmbda == 0:
                return mpmath.mp.log(one + x)
            else:
                return mpmath.mp.powm1(one + x, lmbda) / lmbda

        assert_mpmath_equal(sc.boxcox1p,
                            exception_to_nan(mp_boxcox1p),
                            [Arg(a=-1, inclusive_a=False), Arg()],
                            n=200,
                            dps=60,
                            rtol=1e-13) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:test_mpmath.py

示例7: mpf2float

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def mpf2float(x):
    """
    Convert an mpf to the nearest floating point number. Just using
    float directly doesn't work because of results like this:

    with mp.workdps(50):
        float(mpf("0.99999999999999999")) = 0.9999999999999999

    """
    return float(mpmath.nstr(x, 17, min_fixed=0, max_fixed=0)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:_mptestutils.py

示例8: mp_assert_allclose

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def mp_assert_allclose(res, std, atol=0, rtol=1e-17):
    """
    Compare lists of mpmath.mpf's or mpmath.mpc's directly so that it
    can be done to higher precision than double.

    """
    try:
        len(res)
    except TypeError:
        res = list(res)

    n = len(std)
    if len(res) != n:
        raise AssertionError("Lengths of inputs not equal.")

    failures = []
    for k in range(n):
        try:
            assert_(mpmath.fabs(res[k] - std[k]) <= atol + rtol*mpmath.fabs(std[k]))
        except AssertionError:
            failures.append(k)

    ndigits = int(abs(np.log10(rtol)))
    msg = [""]
    msg.append("Bad results ({} out of {}) for the following points:"
               .format(len(failures), n))
    for k in failures:
        resrep = mpmath.nstr(res[k], ndigits, min_fixed=0, max_fixed=0)
        stdrep = mpmath.nstr(std[k], ndigits, min_fixed=0, max_fixed=0)
        if std[k] == 0:
            rdiff = "inf"
        else:
            rdiff = mpmath.fabs((res[k] - std[k])/std[k])
            rdiff = mpmath.nstr(rdiff, 3)
        msg.append("{}: {} != {} (rdiff {})".format(k, resrep, stdrep, rdiff))
    if failures:
        assert_(False, "\n".join(msg)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:39,代碼來源:_mptestutils.py

示例9: compute_a

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def compute_a(n):
    """a_k from DLMF 5.11.6"""
    a = [mp.sqrt(2)/2]
    for k in range(1, n):
        ak = a[-1]/k
        for j in range(1, len(a)):
            ak -= a[j]*a[-j]/(j + 1)
        ak /= a[0]*(1 + mp.mpf(1)/(k + 1))
        a.append(ak)
    return a 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:gammainc_asy.py

示例10: lagrange_inversion

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def lagrange_inversion(a):
    """Given a series

    f(x) = a[1]*x + a[2]*x**2 + ... + a[n-1]*x**(n - 1),

    use the Lagrange inversion formula to compute a series

    g(x) = b[1]*x + b[2]*x**2 + ... + b[n-1]*x**(n - 1)

    so that f(g(x)) = g(f(x)) = x mod x**n. We must have a[0] = 0, so
    necessarily b[0] = 0 too.

    The algorithm is naive and could be improved, but speed isn't an
    issue here and it's easy to read.

    """
    n = len(a)
    f = sum(a[i]*x**i for i in range(len(a)))
    h = (x/f).series(x, 0, n).removeO()
    hpower = [h**0]
    for k in range(n):
        hpower.append((hpower[-1]*h).expand())
    b = [mp.mpf(0)]
    for k in range(1, n):
        b.append(hpower[k].coeff(x, k - 1)/k)
    b = map(lambda x: mp.mpf(x), b)
    return b 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:29,代碼來源:utils.py

示例11: _binomial_cdf

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def _binomial_cdf(k, n, p):
    k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p)
    if k <= 0:
        return mpmath.mpf(0)
    elif k >= n:
        return mpmath.mpf(1)

    onemp = mpmath.fsub(1, p, exact=True)
    return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:11,代碼來源:test_cdflib.py

示例12: _f_cdf

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def _f_cdf(dfn, dfd, x):
    if x < 0:
        return mpmath.mpf(0)
    dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x)
    ub = dfn*x/(dfn*x + dfd)
    res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True)
    return res 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_cdflib.py

示例13: _noncentral_chi_cdf

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def _noncentral_chi_cdf(x, df, nc, dps=None):
    if dps is None:
        dps = mpmath.mp.dps
    x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc)
    with mpmath.workdps(dps):
        res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x])
        return res 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_cdflib.py

示例14: test_tklmbda_zero_shape

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def test_tklmbda_zero_shape(self):
        # When lmbda = 0 the CDF has a simple closed form
        one = mpmath.mpf(1)
        assert_mpmath_equal(
            lambda x: sp.tklmbda(x, 0),
            lambda x: one/(mpmath.exp(-x) + one),
            [Arg()], rtol=1e-7) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_cdflib.py

示例15: test_g

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import mpf [as 別名]
def test_g():
    # Test data for the g_k. See DLMF 5.11.4.
    with mp.workdps(30):
        g = [mp.mpf(1), mp.mpf(1)/12, mp.mpf(1)/288,
             -mp.mpf(139)/51840, -mp.mpf(571)/2488320,
             mp.mpf(163879)/209018880, mp.mpf(5246819)/75246796800]
        mp_assert_allclose(compute_g(7), g) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_precompute_gammainc.py


注:本文中的mpmath.mpf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。