本文整理匯總了Python中mpmath.log方法的典型用法代碼示例。如果您正苦於以下問題:Python mpmath.log方法的具體用法?Python mpmath.log怎麽用?Python mpmath.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mpmath
的用法示例。
在下文中一共展示了mpmath.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_boxcox
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_boxcox(self):
def mp_boxcox(x, lmbda):
x = mpmath.mp.mpf(x)
lmbda = mpmath.mp.mpf(lmbda)
if lmbda == 0:
return mpmath.mp.log(x)
else:
return mpmath.mp.powm1(x, lmbda) / lmbda
assert_mpmath_equal(sc.boxcox,
exception_to_nan(mp_boxcox),
[Arg(a=0, inclusive_a=False), Arg()],
n=200,
dps=60,
rtol=1e-13)
示例2: _compute_delta
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def _compute_delta(log_moments, eps):
"""Compute delta for given log_moments and eps.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
eps: the target epsilon.
Returns:
delta
"""
min_delta = 1.0
for moment_order, log_moment in log_moments:
if moment_order == 0:
continue
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
if log_moment < moment_order * eps:
min_delta = min(min_delta,
math.exp(log_moment - moment_order * eps))
return min_delta
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:22,代碼來源:gaussian_moments.py
示例3: _compute_eps
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def _compute_eps(log_moments, delta):
"""Compute epsilon for given log_moments and delta.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
delta: the target delta.
Returns:
epsilon
"""
min_eps = float("inf")
for moment_order, log_moment in log_moments:
if moment_order == 0:
continue
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
min_eps = min(min_eps, (log_moment - math.log(delta)) / moment_order)
return min_eps
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:20,代碼來源:gaussian_moments.py
示例4: eta
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def eta(lam):
"""Function from DLMF 8.12.1 shifted to be centered at 0."""
if lam > 0:
return mp.sqrt(2*(lam - mp.log(lam + 1)))
elif lam < 0:
return -mp.sqrt(2*(lam - mp.log(lam + 1)))
else:
return 0
示例5: test_beta
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_beta():
np.random.seed(1234)
b = np.r_[np.logspace(-200, 200, 4),
np.logspace(-10, 10, 4),
np.logspace(-1, 1, 4),
np.arange(-10, 11, 1),
np.arange(-10, 11, 1) + 0.5,
-1, -2.3, -3, -100.3, -10003.4]
a = b
ab = np.array(np.broadcast_arrays(a[:,None], b[None,:])).reshape(2, -1).T
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
try:
mpmath.mp.dps = 400
assert_func_equal(sc.beta,
lambda a, b: float(mpmath.beta(a, b)),
ab,
vectorized=False,
rtol=1e-10,
ignore_inf_sign=True)
assert_func_equal(
sc.betaln,
lambda a, b: float(mpmath.log(abs(mpmath.beta(a, b)))),
ab,
vectorized=False,
rtol=1e-10)
finally:
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
#------------------------------------------------------------------------------
# Machinery for systematic tests
#------------------------------------------------------------------------------
示例6: test_log
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_log(self):
with mp.workdps(30):
logcoeffs = mp.taylor(lambda x: mp.log(1 + x), 0, 10)
expcoeffs = mp.taylor(lambda x: mp.exp(x) - 1, 0, 10)
invlogcoeffs = lagrange_inversion(logcoeffs)
mp_assert_allclose(invlogcoeffs, expcoeffs)
示例7: test_beta
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_beta():
np.random.seed(1234)
b = np.r_[np.logspace(-200, 200, 4),
np.logspace(-10, 10, 4),
np.logspace(-1, 1, 4),
np.arange(-10, 11, 1),
np.arange(-10, 11, 1) + 0.5,
-1, -2.3, -3, -100.3, -10003.4]
a = b
ab = np.array(np.broadcast_arrays(a[:,None], b[None,:])).reshape(2, -1).T
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
try:
mpmath.mp.dps = 400
assert_func_equal(sc.beta,
lambda a, b: float(mpmath.beta(a, b)),
ab,
vectorized=False,
rtol=1e-10,
ignore_inf_sign=True)
assert_func_equal(
sc.betaln,
lambda a, b: float(mpmath.log(abs(mpmath.beta(a, b)))),
ab,
vectorized=False,
rtol=1e-10)
finally:
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
# ------------------------------------------------------------------------------
# loggamma
# ------------------------------------------------------------------------------
示例8: test_exprel
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_exprel(self):
assert_mpmath_equal(sc.exprel,
lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
[Arg(a=-np.log(np.finfo(np.double).max), b=np.log(np.finfo(np.double).max))])
assert_mpmath_equal(sc.exprel,
lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
np.array([1e-12, 1e-24, 0, 1e12, 1e24, np.inf]), rtol=1e-11)
assert_(np.isinf(sc.exprel(np.inf)))
assert_(sc.exprel(-np.inf) == 0)
示例9: test_log1p_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_log1p_complex(self):
assert_mpmath_equal(sc.log1p,
lambda x: mpmath.log(x+1),
[ComplexArg()], dps=60)
示例10: test_log_ndtr
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_log_ndtr(self):
assert_mpmath_equal(sc.log_ndtr,
exception_to_nan(lambda z: mpmath.log(mpmath.ncdf(z))),
[Arg()], n=600, dps=300)
示例11: test_log_ndtr_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_log_ndtr_complex(self):
assert_mpmath_equal(sc.log_ndtr,
exception_to_nan(lambda z: mpmath.log(mpmath.erfc(-z/np.sqrt(2.))/2.)),
[ComplexArg(a=complex(-10000, -100),
b=complex(10000, 100))], n=200, dps=300)
示例12: test_gammaln
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_gammaln(self):
# The real part of loggamma is log(|gamma(z)|).
def f(z):
return mpmath.loggamma(z).real
assert_mpmath_equal(sc.gammaln, exception_to_nan(f), [Arg()])
示例13: test_lgam1p
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def test_lgam1p(self):
def param_filter(x):
# Filter the poles
return np.where((np.floor(x) == x) & (x <= 0), False, True)
def mp_lgam1p(z):
# The real part of loggamma is log(|gamma(z)|)
return mpmath.loggamma(1 + z).real
assert_mpmath_equal(_lgam1p,
mp_lgam1p,
[Arg()], rtol=1e-13, dps=100,
param_filter=param_filter)
示例14: compute_b
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def compute_b(sigma, q, lmbd, verbose=False):
mu0, _, mu = distributions(sigma, q)
b_lambda_fn = lambda z: mu0(z) * np.power(cropped_ratio(mu0(z), mu(z)), lmbd)
b_lambda = integral_inf(b_lambda_fn)
m = sigma ** 2 * (np.log((2. - q) / (1. - q)) + 1. / (2 * sigma ** 2))
b_fn = lambda z: (np.power(mu0(z) / mu(z), lmbd) -
np.power(mu(-z) / mu0(z), lmbd))
if verbose:
print "M =", m
print "f(-M) = {} f(M) = {}".format(b_fn(-m), b_fn(m))
assert b_fn(-m) < 0 and b_fn(m) < 0
b_lambda_int1_fn = lambda z: (mu0(z) *
np.power(cropped_ratio(mu0(z), mu(z)), lmbd))
b_lambda_int2_fn = lambda z: (mu0(z) *
np.power(cropped_ratio(mu(z), mu0(z)), lmbd))
b_int1 = integral_bounded(b_lambda_int1_fn, -m, m)
b_int2 = integral_bounded(b_lambda_int2_fn, -m, m)
a_lambda_m1 = compute_a(sigma, q, lmbd - 1)
b_bound = a_lambda_m1 + b_int1 - b_int2
if verbose:
print "B: by numerical integration", b_lambda
print "B must be no more than ", b_bound
print b_lambda, b_bound
return _to_np_float64(b_lambda)
###########################
# MULTIPRECISION ROUTINES #
###########################
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:36,代碼來源:gaussian_moments.py
示例15: compute_b_mp
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import log [as 別名]
def compute_b_mp(sigma, q, lmbd, verbose=False):
lmbd_int = int(math.ceil(lmbd))
if lmbd_int == 0:
return 1.0
mu0, _, mu = distributions_mp(sigma, q)
b_lambda_fn = lambda z: mu0(z) * (mu0(z) / mu(z)) ** lmbd_int
b_lambda = integral_inf_mp(b_lambda_fn)
m = sigma ** 2 * (mp.log((2 - q) / (1 - q)) + 1 / (2 * (sigma ** 2)))
b_fn = lambda z: ((mu0(z) / mu(z)) ** lmbd_int -
(mu(-z) / mu0(z)) ** lmbd_int)
if verbose:
print "M =", m
print "f(-M) = {} f(M) = {}".format(b_fn(-m), b_fn(m))
assert b_fn(-m) < 0 and b_fn(m) < 0
b_lambda_int1_fn = lambda z: mu0(z) * (mu0(z) / mu(z)) ** lmbd_int
b_lambda_int2_fn = lambda z: mu0(z) * (mu(z) / mu0(z)) ** lmbd_int
b_int1 = integral_bounded_mp(b_lambda_int1_fn, -m, m)
b_int2 = integral_bounded_mp(b_lambda_int2_fn, -m, m)
a_lambda_m1 = compute_a_mp(sigma, q, lmbd - 1)
b_bound = a_lambda_m1 + b_int1 - b_int2
if verbose:
print "B by numerical integration", b_lambda
print "B must be no more than ", b_bound
assert b_lambda < b_bound + 1e-5
return _to_np_float64(b_lambda)
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:33,代碼來源:gaussian_moments.py