本文整理匯總了Python中mpmath.inf方法的典型用法代碼示例。如果您正苦於以下問題:Python mpmath.inf方法的具體用法?Python mpmath.inf怎麽用?Python mpmath.inf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mpmath
的用法示例。
在下文中一共展示了mpmath.inf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_wrightomega_branch
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_wrightomega_branch():
x = -np.logspace(10, 0, 25)
picut_above = [np.nextafter(np.pi, np.inf)]
picut_below = [np.nextafter(np.pi, -np.inf)]
npicut_above = [np.nextafter(-np.pi, np.inf)]
npicut_below = [np.nextafter(-np.pi, -np.inf)]
for i in range(50):
picut_above.append(np.nextafter(picut_above[-1], np.inf))
picut_below.append(np.nextafter(picut_below[-1], -np.inf))
npicut_above.append(np.nextafter(npicut_above[-1], np.inf))
npicut_below.append(np.nextafter(npicut_below[-1], -np.inf))
y = np.hstack((picut_above, picut_below, npicut_above, npicut_below))
x, y = np.meshgrid(x, y)
z = (x + 1j*y).flatten()
dataset = []
for z0 in z:
dataset.append((z0, complex(_mpmath_wrightomega(z0, 25))))
dataset = np.asarray(dataset)
FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-8).check()
示例2: test_e1_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_e1_complex(self):
# E_1 oscillates as Im[z] -> +- inf, so limit range
assert_mpmath_equal(sc.exp1,
mpmath.e1,
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
rtol=1e-11)
# Check cross-over region
assert_mpmath_equal(sc.exp1,
mpmath.e1,
(np.linspace(-50, 50, 171)[:, None] +
np.r_[0, np.logspace(-3, 2, 61),
-np.logspace(-3, 2, 11)]*1j).ravel(),
rtol=1e-11)
assert_mpmath_equal(sc.exp1,
mpmath.e1,
(np.linspace(-50, -35, 10000) + 0j),
rtol=1e-11)
示例3: test_lanczos_sum_expg_scaled
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_lanczos_sum_expg_scaled(self):
maxgamma = 171.624376956302725
e = np.exp(1)
g = 6.024680040776729583740234375
def gamma(x):
with np.errstate(over='ignore'):
fac = ((x + g - 0.5)/e)**(x - 0.5)
if fac != np.inf:
res = fac*_lanczos_sum_expg_scaled(x)
else:
fac = ((x + g - 0.5)/e)**(0.5*(x - 0.5))
res = fac*_lanczos_sum_expg_scaled(x)
res *= fac
return res
assert_mpmath_equal(gamma,
mpmath.gamma,
[Arg(0, maxgamma, inclusive_a=False)],
rtol=1e-13)
示例4: _compute_delta
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def _compute_delta(log_moments, eps):
"""Compute delta for given log_moments and eps.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
eps: the target epsilon.
Returns:
delta
"""
min_delta = 1.0
for moment_order, log_moment in log_moments:
if moment_order == 0:
continue
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
if log_moment < moment_order * eps:
min_delta = min(min_delta,
math.exp(log_moment - moment_order * eps))
return min_delta
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:22,代碼來源:gaussian_moments.py
示例5: _compute_eps
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def _compute_eps(log_moments, delta):
"""Compute epsilon for given log_moments and delta.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
delta: the target delta.
Returns:
epsilon
"""
min_eps = float("inf")
for moment_order, log_moment in log_moments:
if moment_order == 0:
continue
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
min_eps = min(min_eps, (log_moment - math.log(delta)) / moment_order)
return min_eps
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:20,代碼來源:gaussian_moments.py
示例6: compute_b_mp
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def compute_b_mp(self, sigma, q, order, verbose=False):
"""Compute B_lambda for arbitrary lambda by numerical integration."""
mu0, _, mu = self._distributions_mp(sigma, q)
b_lambda_fn = lambda z: mu0(z) * (mu0(z) / mu(z)) ** order
b_numeric = self._integral_inf_mp(b_lambda_fn)
if verbose:
_, z1 = rdp_accountant._compute_zs(sigma, q)
print("z1 = ", z1)
print("x in the Taylor series = ", q / (1 - q) * np.exp(
(2 * z1 - 1) / (2 * sigma ** 2)))
b0_numeric = self._integral_bounded_mp(b_lambda_fn, -np.inf, z1)
b1_numeric = self._integral_bounded_mp(b_lambda_fn, z1, +np.inf)
print("B: numerically {} = {} + {}".format(b_numeric, b0_numeric,
b1_numeric))
return float(b_numeric)
示例7: test_besselk
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_besselk(self):
assert_mpmath_equal(sc.kv,
mpmath.besselk,
[Arg(-200, 200), Arg(0, np.inf)],
nan_ok=False, rtol=1e-12)
示例8: test_besselk_int
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_besselk_int(self):
assert_mpmath_equal(sc.kn,
mpmath.besselk,
[IntArg(-200, 200), Arg(0, np.inf)],
nan_ok=False, rtol=1e-12)
示例9: test_bessely
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_bessely(self):
def mpbessely(v, x):
r = float(mpmath.bessely(v, x, **HYPERKW))
if abs(r) > 1e305:
# overflowing to inf a bit earlier is OK
r = np.inf * np.sign(r)
if abs(r) == 0 and x == 0:
# invalid result from mpmath, point x=0 is a divergence
return np.nan
return r
assert_mpmath_equal(sc.yv,
exception_to_nan(mpbessely),
[Arg(-1e100, 1e100), Arg(-1e8, 1e8)],
n=5000)
示例10: test_bessely_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_bessely_complex(self):
def mpbessely(v, x):
r = complex(mpmath.bessely(v, x, **HYPERKW))
if abs(r) > 1e305:
# overflowing to inf a bit earlier is OK
olderr = np.seterr(invalid='ignore')
try:
r = np.inf * np.sign(r)
finally:
np.seterr(**olderr)
return r
assert_mpmath_equal(lambda v, z: sc.yv(v.real, z),
exception_to_nan(mpbessely),
[Arg(), ComplexArg()],
n=15000)
示例11: test_ci_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_ci_complex(self):
def ci(z):
return sc.sici(z)[1]
# ci oscillates as Re[z] -> +- inf, so limit range
assert_mpmath_equal(ci,
mpmath.ci,
[ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))],
rtol=1e-8)
示例12: test_exprel
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_exprel(self):
assert_mpmath_equal(sc.exprel,
lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
[Arg(a=-np.log(np.finfo(np.double).max), b=np.log(np.finfo(np.double).max))])
assert_mpmath_equal(sc.exprel,
lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
np.array([1e-12, 1e-24, 0, 1e12, 1e24, np.inf]), rtol=1e-11)
assert_(np.isinf(sc.exprel(np.inf)))
assert_(sc.exprel(-np.inf) == 0)
示例13: test_expm1_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_expm1_complex(self):
# Oscillates as a function of Im[z], so limit range to avoid loss of precision
assert_mpmath_equal(sc.expm1,
mpmath.expm1,
[ComplexArg(complex(-np.inf, -1e7), complex(np.inf, 1e7))])
示例14: test_ei_complex
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_ei_complex(self):
# Ei oscillates as Im[z] -> +- inf, so limit range
assert_mpmath_equal(sc.expi,
mpmath.ei,
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
rtol=1e-9)
示例15: test_lambertw_real
# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import inf [as 別名]
def test_lambertw_real(self):
assert_mpmath_equal(lambda x, k: sc.lambertw(x, int(k.real)),
lambda x, k: mpmath.lambertw(x, int(k.real)),
[ComplexArg(-np.inf, np.inf), IntArg(0, 10)],
rtol=1e-13, nan_ok=False)