當前位置: 首頁>>代碼示例>>Python>>正文


Python mpmath.exp方法代碼示例

本文整理匯總了Python中mpmath.exp方法的典型用法代碼示例。如果您正苦於以下問題:Python mpmath.exp方法的具體用法?Python mpmath.exp怎麽用?Python mpmath.exp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mpmath的用法示例。


在下文中一共展示了mpmath.exp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: gammainc

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def gammainc(a, x, dps=50, maxterms=10**8):
    """Compute gammainc exactly like mpmath does but allow for more
    summands in hypercomb. See

    mpmath/functions/expintegrals.py#L134
    
    in the mpmath github repository.

    """
    with mp.workdps(dps):
        z, a, b = mp.mpf(a), mp.mpf(x), mp.mpf(x)
        G = [z]
        negb = mp.fneg(b, exact=True)

        def h(z):
            T1 = [mp.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b
            return (T1,)

        res = mp.hypercomb(h, [z], maxterms=maxterms)
        return mpf2float(res) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:gammainc_data.py

示例2: zpkfreqz

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def zpkfreqz(z, p, k, worN=None):
    """
    Frequency response of a filter in zpk format, using mpmath.

    This is the same calculation as scipy.signal.freqz, but the input is in
    zpk format, the calculation is performed using mpath, and the results are
    returned in lists instead of numpy arrays.
    """
    if worN is None or isinstance(worN, int):
        N = worN or 512
        ws = [mpmath.pi * mpmath.mpf(j) / N for j in range(N)]
    else:
        ws = worN

    h = []
    for wk in ws:
        zm1 = mpmath.exp(1j * wk)
        numer = _prod([zm1 - t for t in z])
        denom = _prod([zm1 - t for t in p])
        hk = k * numer / denom
        h.append(hk)
    return ws, h 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:24,代碼來源:mpsig.py

示例3: test_loggamma_taylor_transition

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def test_loggamma_taylor_transition():
    # Make sure there isn't a big jump in accuracy when we move from
    # using the Taylor series to using the recurrence relation.

    r = LOGGAMMA_TAYLOR_RADIUS + np.array([-0.1, -0.01, 0, 0.01, 0.1])
    theta = np.linspace(0, 2*np.pi, 20)
    r, theta = np.meshgrid(r, theta)
    dz = r*np.exp(1j*theta)
    z = np.r_[1 + dz, 2 + dz].flatten()

    dataset = []
    for z0 in z:
        dataset.append((z0, complex(mpmath.loggamma(z0))))
    dataset = np.array(dataset)

    FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check() 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_mpmath.py

示例4: test_loggamma_taylor

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def test_loggamma_taylor():
    # Test around the zeros at z = 1, 2.

    r = np.logspace(-16, np.log10(LOGGAMMA_TAYLOR_RADIUS), 10)
    theta = np.linspace(0, 2*np.pi, 20)
    r, theta = np.meshgrid(r, theta)
    dz = r*np.exp(1j*theta)
    z = np.r_[1 + dz, 2 + dz].flatten()

    dataset = []
    for z0 in z:
        dataset.append((z0, complex(mpmath.loggamma(z0))))
    dataset = np.array(dataset)

    FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()


# ------------------------------------------------------------------------------
# rgamma
# ------------------------------------------------------------------------------ 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_mpmath.py

示例5: test_spence_circle

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def test_spence_circle():
    # The trickiest region for spence is around the circle |z - 1| = 1,
    # so test that region carefully.

    def spence(z):
        return complex(mpmath.polylog(2, 1 - z))

    r = np.linspace(0.5, 1.5)
    theta = np.linspace(0, 2*pi)
    z = (1 + np.outer(r, np.exp(1j*theta))).flatten()
    dataset = []
    for z0 in z:
        dataset.append((z0, spence(z0)))

    dataset = np.array(dataset)
    FuncData(sc.spence, dataset, 0, 1, rtol=1e-14).check()


# ------------------------------------------------------------------------------
# sinpi and cospi
# ------------------------------------------------------------------------------ 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:23,代碼來源:test_mpmath.py

示例6: test_lanczos_sum_expg_scaled

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def test_lanczos_sum_expg_scaled(self):
        maxgamma = 171.624376956302725
        e = np.exp(1)
        g = 6.024680040776729583740234375

        def gamma(x):
            with np.errstate(over='ignore'):
                fac = ((x + g - 0.5)/e)**(x - 0.5)
                if fac != np.inf:
                    res = fac*_lanczos_sum_expg_scaled(x)
                else:
                    fac = ((x + g - 0.5)/e)**(0.5*(x - 0.5))
                    res = fac*_lanczos_sum_expg_scaled(x)
                    res *= fac
            return res

        assert_mpmath_equal(gamma,
                            mpmath.gamma,
                            [Arg(0, maxgamma, inclusive_a=False)],
                            rtol=1e-13) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_mpmath.py

示例7: compute_a

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def compute_a(sigma, q, lmbd, verbose=False):
  lmbd_int = int(math.ceil(lmbd))
  if lmbd_int == 0:
    return 1.0

  a_lambda_first_term_exact = 0
  a_lambda_second_term_exact = 0
  for i in xrange(lmbd_int + 1):
    coef_i = scipy.special.binom(lmbd_int, i) * (q ** i)
    s1, s2 = 0, 0
    for j in xrange(i + 1):
      coef_j = scipy.special.binom(i, j) * (-1) ** (i - j)
      s1 += coef_j * np.exp((j * j - j) / (2.0 * (sigma ** 2)))
      s2 += coef_j * np.exp((j * j + j) / (2.0 * (sigma ** 2)))
    a_lambda_first_term_exact += coef_i * s1
    a_lambda_second_term_exact += coef_i * s2

  a_lambda_exact = ((1.0 - q) * a_lambda_first_term_exact +
                    q * a_lambda_second_term_exact)
  if verbose:
    print "A: by binomial expansion    {} = {} + {}".format(
        a_lambda_exact,
        (1.0 - q) * a_lambda_first_term_exact,
        q * a_lambda_second_term_exact)
  return _to_np_float64(a_lambda_exact) 
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:27,代碼來源:gaussian_moments.py

示例8: _compute_delta

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def _compute_delta(log_moments, eps):
  """Compute delta for given log_moments and eps.
  Args:
    log_moments: the log moments of privacy loss, in the form of pairs
      of (moment_order, log_moment)
    eps: the target epsilon.
  Returns:
    delta
  """
  min_delta = 1.0
  for moment_order, log_moment in log_moments:
    if moment_order == 0:
      continue
    if math.isinf(log_moment) or math.isnan(log_moment):
      sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
      continue
    if log_moment < moment_order * eps:
      min_delta = min(min_delta,
                      math.exp(log_moment - moment_order * eps))
  return min_delta 
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:22,代碼來源:gaussian_moments.py

示例9: compute_b_mp

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def compute_b_mp(self, sigma, q, order, verbose=False):
    """Compute B_lambda for arbitrary lambda by numerical integration."""
    mu0, _, mu = self._distributions_mp(sigma, q)
    b_lambda_fn = lambda z: mu0(z) * (mu0(z) / mu(z)) ** order
    b_numeric = self._integral_inf_mp(b_lambda_fn)

    if verbose:
      _, z1 = rdp_accountant._compute_zs(sigma, q)
      print("z1 = ", z1)
      print("x in the Taylor series = ", q / (1 - q) * np.exp(
          (2 * z1 - 1) / (2 * sigma ** 2)))

      b0_numeric = self._integral_bounded_mp(b_lambda_fn, -np.inf, z1)
      b1_numeric = self._integral_bounded_mp(b_lambda_fn, z1, +np.inf)

      print("B: numerically {} = {} + {}".format(b_numeric, b0_numeric,
                                                 b1_numeric))
    return float(b_numeric) 
開發者ID:isobar-us,項目名稱:multilabel-image-classification-tensorflow,代碼行數:20,代碼來源:rdp_accountant_test.py

示例10: gammaincc

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def gammaincc(a, x, dps=50, maxterms=10**8):
    """Compute gammaincc exactly like mpmath does but allow for more
    terms in hypercomb. See

    mpmath/functions/expintegrals.py#L187

    in the mpmath github repository.

    """
    with mp.workdps(dps):
        z, a = a, x
        
        if mp.isint(z):
            try:
                # mpmath has a fast integer path
                return mpf2float(mp.gammainc(z, a=a, regularized=True))
            except mp.libmp.NoConvergence:
                pass
        nega = mp.fneg(a, exact=True)
        G = [z]
        # Use 2F0 series when possible; fall back to lower gamma representation
        try:
            def h(z):
                r = z-1
                return [([mp.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)]
            return mpf2float(mp.hypercomb(h, [z], force_series=True))
        except mp.libmp.NoConvergence:
            def h(z):
                T1 = [], [1, z-1], [z], G, [], [], 0
                T2 = [-mp.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a
                return T1, T2
            return mpf2float(mp.hypercomb(h, [z], maxterms=maxterms)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:gammainc_data.py

示例11: _butter_analog_poles

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def _butter_analog_poles(n):
    """
    Poles of an analog Butterworth lowpass filter.

    This is the same calculation as scipy.signal.buttap(n) or
    scipy.signal.butter(n, 1, analog=True, output='zpk'), but mpmath is used,
    and only the poles are returned.
    """
    poles = []
    for k in range(-n+1, n, 2):
        poles.append(-mpmath.exp(1j*mpmath.pi*k/(2*n)))
    return poles 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:14,代碼來源:mpsig.py

示例12: _noncentral_chi_pdf

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def _noncentral_chi_pdf(t, df, nc):
    res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t))
    res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2
    return res 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:test_cdflib.py

示例13: test_log

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def test_log(self):
        with mp.workdps(30):
            logcoeffs = mp.taylor(lambda x: mp.log(1 + x), 0, 10)
            expcoeffs = mp.taylor(lambda x: mp.exp(x) - 1, 0, 10)
            invlogcoeffs = lagrange_inversion(logcoeffs)
            mp_assert_allclose(invlogcoeffs, expcoeffs) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:8,代碼來源:test_precompute_utils.py

示例14: test_expi_complex

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def test_expi_complex():
    dataset = []
    for r in np.logspace(-99, 2, 10):
        for p in np.linspace(0, 2*np.pi, 30):
            z = r*np.exp(1j*p)
            dataset.append((z, complex(mpmath.ei(z))))
    dataset = np.array(dataset, dtype=np.complex_)

    FuncData(sc.expi, dataset, 0, 1).check()


# ------------------------------------------------------------------------------
# expn
# ------------------------------------------------------------------------------ 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:16,代碼來源:test_mpmath.py

示例15: test_igam_fac

# 需要導入模塊: import mpmath [as 別名]
# 或者: from mpmath import exp [as 別名]
def test_igam_fac(self):
        def mp_igam_fac(a, x):
            return mpmath.power(x, a)*mpmath.exp(-x)/mpmath.gamma(a)

        assert_mpmath_equal(_igam_fac,
                            mp_igam_fac,
                            [Arg(0, 1e14, inclusive_a=False), Arg(0, 1e14)],
                            rtol=1e-10) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:10,代碼來源:test_mpmath.py


注:本文中的mpmath.exp方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。