當前位置: 首頁>>代碼示例>>Python>>正文


Python Axes3D.name方法代碼示例

本文整理匯總了Python中mpl_toolkits.mplot3d.Axes3D.name方法的典型用法代碼示例。如果您正苦於以下問題:Python Axes3D.name方法的具體用法?Python Axes3D.name怎麽用?Python Axes3D.name使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mpl_toolkits.mplot3d.Axes3D的用法示例。


在下文中一共展示了Axes3D.name方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: render_sdf

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def render_sdf(obj_, object_name_):
    plt.figure()
    # ax = h.add_subplot(111, projection='3d')

    # surface_points = np.where(np.abs(sdf.sdf_values) < thresh)
    # surface_points = np.array(surface_points)
    # surface_points = surface_points[:, np.random.choice(surface_points[0].size, 3000, replace=True)]
    # # from IPython import embed; embed()
    surface_points = obj_.sdf.surface_points()[0]
    surface_points = np.array(surface_points)
    ind = np.random.choice(np.arange(len(surface_points)), 1000)
    x = surface_points[ind, 0]
    y = surface_points[ind, 1]
    z = surface_points[ind, 2]

    ax = plt.gca(projection=Axes3D.name)
    ax.scatter(x, y, z, '.', s=np.ones_like(x) * 0.3, c='b')
    ax.set_xlim3d(0, obj_.sdf.dims_[0])
    ax.set_ylim3d(0, obj_.sdf.dims_[1])
    ax.set_zlim3d(0, obj_.sdf.dims_[2])
    plt.title(object_name_)
    plt.show() 
開發者ID:lianghongzhuo,項目名稱:PointNetGPD,代碼行數:24,代碼來源:render_sdf.py

示例2: plot

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def plot(self):
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D

        fig = plt.figure()
        ax = fig.gca(projection=Axes3D.name)
        # ax.set_aspect("equal")

        flt = numpy.vectorize(float)
        pts = flt(self.points)
        wgs = flt(self.weights)

        for p, w in zip(pts, wgs):
            # <https://en.wikipedia.org/wiki/Spherical_cap>
            w *= 4 * numpy.pi
            theta = numpy.arccos(1.0 - abs(w) / (2 * numpy.pi))
            color = "tab:blue" if w >= 0 else "tab:red"
            _plot_spherical_cap_mpl(ax, p, theta, color)

        ax.set_axis_off() 
開發者ID:nschloe,項目名稱:quadpy,代碼行數:22,代碼來源:_helpers.py

示例3: visualize_voxels

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def visualize_voxels(voxels, out_file=None, show=False):
    r''' Visualizes voxel data.

    Args:
        voxels (tensor): voxel data
        out_file (string): output file
        show (bool): whether the plot should be shown
    '''
    # Use numpy
    voxels = np.asarray(voxels)
    # Create plot
    fig = plt.figure()
    ax = fig.gca(projection=Axes3D.name)
    voxels = voxels.transpose(2, 0, 1)
    ax.voxels(voxels, edgecolor='k')
    ax.set_xlabel('Z')
    ax.set_ylabel('X')
    ax.set_zlabel('Y')
    ax.view_init(elev=30, azim=45)
    if out_file is not None:
        plt.savefig(out_file)
    if show:
        plt.show()
    plt.close(fig) 
開發者ID:autonomousvision,項目名稱:occupancy_flow,代碼行數:26,代碼來源:visualize.py

示例4: plot_rand_meth_samples

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def plot_rand_meth_samples(generator):
    """Plot the samples of the rand meth class."""
    norm, rad = norm_rad(generator._cov_sample)

    fig = plt.figure(figsize=(10, 4))

    if generator.model.dim == 3:
        ax = fig.add_subplot(121, projection=Axes3D.name)
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        x = np.outer(np.cos(u), np.sin(v))
        y = np.outer(np.sin(u), np.sin(v))
        z = np.outer(np.ones(np.size(u)), np.cos(v))
        ax.plot_surface(x, y, z, rstride=4, cstride=4, color="b", alpha=0.1)
        ax.scatter(norm[0], norm[1], norm[2])
    elif generator.model.dim == 2:
        ax = fig.add_subplot(121)
        u = np.linspace(0, 2 * np.pi, 100)
        x = np.cos(u)
        y = np.sin(u)
        ax.plot(x, y, color="b", alpha=0.1)
        ax.scatter(norm[0], norm[1])
        ax.set_aspect("equal")
    else:
        ax = fig.add_subplot(121)
        ax.bar(-1, np.sum(np.isclose(norm, -1)), color="C0")
        ax.bar(1, np.sum(np.isclose(norm, 1)), color="C0")
        ax.set_xticks([-1, 1])
        ax.set_xticklabels(("-1", "1"))
    ax.set_title("Direction sampling")

    ax = fig.add_subplot(122)
    x = np.linspace(0, 10 / generator.model.integral_scale)
    y = generator.model.spectral_rad_pdf(x)
    ax.plot(x, y, label="radial spectral density")
    sample_in = np.sum(rad <= np.max(x))
    ax.hist(rad[rad <= np.max(x)], bins=sample_in // 50, density=True)
    ax.set_xlim([0, np.max(x)])
    ax.set_title("Radius samples shown {}/{}".format(sample_in, len(rad)))
    ax.legend()
    fig.show() 
開發者ID:GeoStat-Framework,項目名稱:GSTools,代碼行數:43,代碼來源:02_check_rand_meth_sampling.py

示例5: get_volume_views

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def get_volume_views(volume, save_dir, n_itr):
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    volume = volume.squeeze().__ge__(0.5)
    fig = plt.figure()
    ax = fig.gca(projection=Axes3D.name)
    ax.set_aspect('equal')
    ax.voxels(volume, edgecolor="k")

    save_path = os.path.join(save_dir, 'voxels-%06d.png' % n_itr)
    plt.savefig(save_path, bbox_inches='tight')
    plt.close()
    return cv2.imread(save_path) 
開發者ID:hzxie,項目名稱:Pix2Vox,代碼行數:16,代碼來源:binvox_visualization.py

示例6: __init__

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def __init__(self, name, weights, points, azimuthal_polar, degree, source):
        self.domain = "U3"
        self.name = name
        self.degree = degree
        self.source = source

        if weights.dtype == numpy.float64:
            self.weights = weights
        else:
            assert weights.dtype in [numpy.dtype("O"), numpy.int_]
            self.weights = weights.astype(numpy.float64)
            self.weights_symbolic = weights

        if points.dtype == numpy.float64:
            self.points = points
        else:
            assert points.dtype in [numpy.dtype("O"), numpy.int_]
            self.points = points.astype(numpy.float64)
            self.points_symbolic = points

        if azimuthal_polar.dtype == numpy.float64:
            self.azimuthal_polar = azimuthal_polar
        else:
            assert azimuthal_polar.dtype in [numpy.dtype("O"), numpy.int_]
            self.azimuthal_polar = azimuthal_polar.astype(numpy.float64)
            self.azimuthal_polar_symbolic = azimuthal_polar 
開發者ID:nschloe,項目名稱:quadpy,代碼行數:28,代碼來源:_helpers.py

示例7: visualize_pointcloud

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def visualize_pointcloud(points, normals=None,
                         out_file=None, show=False):
    r''' Visualizes point cloud data.

    Args:
        points (tensor): point data
        normals (tensor): normal data (if existing)
        out_file (string): output file
        show (bool): whether the plot should be shown
    '''
    # Use numpy
    points = np.asarray(points)
    # Create plot
    fig = plt.figure()
    ax = fig.gca(projection=Axes3D.name)
    ax.scatter(points[:, 2], points[:, 0], points[:, 1])
    if normals is not None:
        ax.quiver(
            points[:, 2], points[:, 0], points[:, 1],
            normals[:, 2], normals[:, 0], normals[:, 1],
            length=0.1, color='k'
        )
    ax.set_xlabel('Z')
    ax.set_ylabel('X')
    ax.set_zlabel('Y')
    ax.set_xlim(-0.5, 0.5)
    ax.set_ylim(-0.5, 0.5)
    ax.set_zlim(-0.5, 0.5)
    ax.view_init(elev=30, azim=45)
    if out_file is not None:
        plt.savefig(out_file)
    if show:
        plt.show()
    plt.close(fig) 
開發者ID:autonomousvision,項目名稱:occupancy_flow,代碼行數:36,代碼來源:visualize.py

示例8: show_straights

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def show_straights(cs):
    from mpl_toolkits.mplot3d import Axes3D

    # Some straight lines in XYZ
    t = numpy.linspace(0.0, 1.0, 101)
    n = 10

    fig = plt.figure()
    ax = fig.gca(projection=Axes3D.name)
    # ax.set_aspect('equal')

    for _ in range(n):
        s1 = numpy.random.rand(3)
        s1 /= numpy.linalg.norm(s1)
        s1 *= 100
        line = numpy.outer(s1, t)
        cs_line = cs.from_xyz100(line)
        # ax.plot(
        #     [cs_line[0][0], cs_line[0][-1]],
        #     [cs_line[1][0], cs_line[1][-1]],
        #     [cs_line[2][0], cs_line[2][-1]],
        #     color='0.5'
        #     )
        ax.plot(*cs_line)

    ax.set_xlabel(cs.labels[0])
    ax.set_ylabel(cs.labels[1])
    ax.set_zlabel(cs.labels[2])

    plt.show() 
開發者ID:nschloe,項目名稱:colorio,代碼行數:32,代碼來源:_tools.py

示例9: show

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def show(self):
        """
        """
        from mpl_toolkits.mplot3d import Axes3D
        from matplotlib import pyplot as plt

        fig = plt.figure()
        ax = fig.gca(projection=Axes3D.name)
        # "It is not currently possible to manually set the aspect on 3D axes"
        # plt.axis("equal")

        if self._circumcenters is None:
            self._compute_cell_circumcenters()

        X = self.node_coords
        for cell_id in range(len(self.cells["nodes"])):
            cc = self._circumcenters[cell_id]
            #
            x = X[self.node_face_cells[..., [cell_id]]]
            face_ccs = compute_triangle_circumcenters(x, self.ei_dot_ei, self.ei_dot_ej)
            # draw the face circumcenters
            ax.plot(
                face_ccs[..., 0].flatten(),
                face_ccs[..., 1].flatten(),
                face_ccs[..., 2].flatten(),
                "go",
            )
            # draw the connections
            #   tet circumcenter---face circumcenter
            for face_cc in face_ccs:
                ax.plot(
                    [cc[..., 0], face_cc[..., 0]],
                    [cc[..., 1], face_cc[..., 1]],
                    [cc[..., 2], face_cc[..., 2]],
                    "b-",
                )
        return 
開發者ID:nschloe,項目名稱:meshplex,代碼行數:39,代碼來源:mesh_tetra.py

示例10: plot

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def plot(fn, random_state):
    """
    Implements plotting of 2D functions generated by FunctionGenerator
    :param fn: Instance of FunctionGenerator
    """
    import numpy as np
    from l2l.matplotlib_ import plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter

    fig = plt.figure()
    ax = fig.gca(projection=Axes3D.name)

    # Make data.
    X = np.arange(fn.bound[0], fn.bound[1], 0.05)
    Y = np.arange(fn.bound[0], fn.bound[1], 0.05)
    XX, YY = np.meshgrid(X, Y)
    Z = [fn.cost_function([x, y], random_state=random_state) for x, y in zip(XX.ravel(), YY.ravel())]
    Z = np.array(Z).reshape(XX.shape)

    # Plot the surface.
    surf = ax.plot_surface(XX, YY, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False)

    # Customize the z axis.
    # ax.set_zlim(-1.01, 1.01)
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    W = np.where(Z == np.min(Z))
    ax.set(title='Min value is %.2f at (%.2f, %.2f)' % (np.min(Z), X[W[0]], Y[W[1]]))

    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5)
    plt.savefig('function.png')
    plt.show() 
開發者ID:IGITUGraz,項目名稱:L2L,代碼行數:37,代碼來源:tools.py

示例11: plot_best_state

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import name [as 別名]
def plot_best_state(train_state):
    X_train, y_train, X_test, y_test, best_y, best_ystd = train_state.packed_data()

    y_dim = best_y.shape[1]

    # Regression plot
    if X_test.shape[1] == 1:
        idx = np.argsort(X_test[:, 0])
        X = X_test[idx, 0]
        plt.figure()
        for i in range(y_dim):
            if y_train is not None:
                plt.plot(X_train[:, 0], y_train[:, i], "ok", label="Train")
            if y_test is not None:
                plt.plot(X, y_test[idx, i], "-k", label="True")
            plt.plot(X, best_y[idx, i], "--r", label="Prediction")
            if best_ystd is not None:
                plt.plot(
                    X, best_y[idx, i] + 2 * best_ystd[idx, i], "-b", label="95% CI"
                )
                plt.plot(X, best_y[idx, i] - 2 * best_ystd[idx, i], "-b")
        plt.xlabel("x")
        plt.ylabel("y")
        plt.legend()
    elif X_test.shape[1] == 2:
        for i in range(y_dim):
            plt.figure()
            ax = plt.axes(projection=Axes3D.name)
            ax.plot3D(X_test[:, 0], X_test[:, 1], best_y[:, i], ".")
            ax.set_xlabel("$x_1$")
            ax.set_ylabel("$x_2$")
            ax.set_zlabel("$y_{}$".format(i + 1))

    # Residual plot
    if y_test is not None:
        plt.figure()
        residual = y_test[:, 0] - best_y[:, 0]
        plt.plot(best_y[:, 0], residual, "o", zorder=1)
        plt.hlines(0, plt.xlim()[0], plt.xlim()[1], linestyles="dashed", zorder=2)
        plt.xlabel("Predicted")
        plt.ylabel("Residual = Observed - Predicted")
        plt.tight_layout()

    if best_ystd is not None:
        plt.figure()
        for i in range(y_dim):
            plt.plot(X_test[:, 0], best_ystd[:, i], "-b")
            plt.plot(
                X_train[:, 0],
                np.interp(X_train[:, 0], X_test[:, 0], best_ystd[:, i]),
                "ok",
            )
        plt.xlabel("x")
        plt.ylabel("std(y)") 
開發者ID:lululxvi,項目名稱:deepxde,代碼行數:56,代碼來源:postprocessing.py


注:本文中的mpl_toolkits.mplot3d.Axes3D.name方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。